Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Authors = Janne Ruokolainen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6251 KiB  
Article
Reactive Black-5, Congo Red and Methyl Orange: Chemical Degradation of Azo-Dyes by Agrobacterium
by Jaspreet Kaur, Gaurav Mudgal, Arvind Negi, Jeewan Tamang, Shambhawi Singh, Gajendra Bahadur Singh, Jagadeesh Chandra Bose K., Sandip Debnath, Mohammad Ahmad Wadaan, Muhammad Farooq Khan, Janne Ruokolainen and Kavindra Kumar Kesari
Water 2023, 15(9), 1664; https://doi.org/10.3390/w15091664 - 24 Apr 2023
Cited by 24 | Viewed by 6443
Abstract
The commercial processing of various biomaterials extensively uses azo dyes (including reactive, direct, acidic, and basic dyes). These industrial applications produce wastewater containing a large volume of solubilized azo dye and hydrolyzed by-products. The treatment of such wastewater is primarily carried out by [...] Read more.
The commercial processing of various biomaterials extensively uses azo dyes (including reactive, direct, acidic, and basic dyes). These industrial applications produce wastewater containing a large volume of solubilized azo dye and hydrolyzed by-products. The treatment of such wastewater is primarily carried out by chemical and, to an extent, physical methods, which lack selectivity and efficiency. Notably, the chemical methods employ free radicals and oxidizing agents that further increase the chemical waste and produce non-biodegradable side-products. Therefore, there is an increasing trend of using microbial-assisted methods. The current study identified a specific Agrobacterium strain (JAS1) that degraded the three structurally distinct azo dyes (Reactive Black 5, Methyl Orange, Congo Red). JAS1 can tolerate high concentrations and be used to perform the in-solution degradation of azo dyes, respectively: Methyl Orange (5.5 g/L and 5.0 g/L), Congo Red (0.50 g/L and 0.40 g/L), and Reactive Black 5 (0.45 g/L and 0.40 g/L). Our study elucidated the molecular mechanisms (primarily enzymatic degradation and adsorption) responsible for the JAS-1-assisted decoloration of azo dyes. The JAS-1-assisted degraded products from these azo dyes were found biodegradable as the germination and seedling growth of wheat seeds were observed. To enhance the scope of the study, JAS1-assisted decolorization was studied for cellulosic materials, indicating a potential application in de-inking and de-dyeing process in recycling industries. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 2409 KiB  
Article
Food-Grade Quercetin-Loaded Nanoemulsion Ameliorates Effects Associated with Parkinson’s Disease and Cancer: Studies Employing a Transgenic C. elegans Model and Human Cancer Cell Lines
by Sabya Sachi Das, Arunabh Sarkar, Siva Chander Chabattula, Priya Ranjan Prasad Verma, Aamir Nazir, Piyush Kumar Gupta, Janne Ruokolainen, Kavindra Kumar Kesari and Sandeep Kumar Singh
Antioxidants 2022, 11(7), 1378; https://doi.org/10.3390/antiox11071378 - 15 Jul 2022
Cited by 27 | Viewed by 3702
Abstract
A nanosized food-grade quercetin-loaded nanoemulsion (QNE) system comprising capmul MCM NF (oil) and cremophor RH 40 (surfactant) was developed using a high-speed homogenization technique. The developed QNE was studied for its significant neuroprotective (anti-Parkinsonism) and cytotoxicity (anticancer) effects against Caenorhabditis elegans (C. [...] Read more.
A nanosized food-grade quercetin-loaded nanoemulsion (QNE) system comprising capmul MCM NF (oil) and cremophor RH 40 (surfactant) was developed using a high-speed homogenization technique. The developed QNE was studied for its significant neuroprotective (anti-Parkinsonism) and cytotoxicity (anticancer) effects against Caenorhabditis elegans (C. elegans) strains and human cancer cells, respectively. HR-TEM studies revealed that the QNE was spherical with a mean globule size of ~50 nm. Selected area electron diffraction (SAED) studies results demonstrated that QNE was amorphous. In vivo results show that QNE potentially reduced the α-Syn aggregation, increased mitochondrial and fat content, and improved the lifespan in transgenic C. elegans strain NL5901. QNE significantly downregulated the reactive oxygen species (ROS) levels in wild-type C. elegans strain N2. In vitro results of the MTT assay show that QNE significantly exhibited chemotherapeutic effects in all treated human cancer cells in an order of cytotoxicity: HeLa cells > A549 cells > MIA PaCa-2 cells, based on the IC50 values at 24 h. Conclusively, the QNE showed improved solubility, targetability, and neuroprotective effects against the PD-induced C. elegans model, and also cytotoxicity against human cancer cells and could be potentially used as an anti-Parkinson’s or anticancer agent. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles)
Show Figures

Figure 1

35 pages, 8414 KiB  
Review
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction
by Vineeta Sharma, Sanat Kumar Dash, Kavitha Govarthanan, Rekha Gahtori, Nidhi Negi, Mahmood Barani, Richa Tomar, Sudip Chakraborty, Santosh Mathapati, Dillip Kumar Bishi, Poonam Negi, Kamal Dua, Sachin Kumar Singh, Rohit Gundamaraju, Abhijit Dey, Janne Ruokolainen, Vijay Kumar Thakur, Kavindra Kumar Kesari, Niraj Kumar Jha, Piyush Kumar Gupta and Shreesh Ojhaadd Show full author list remove Hide full author list
Cells 2021, 10(10), 2538; https://doi.org/10.3390/cells10102538 - 25 Sep 2021
Cited by 32 | Viewed by 10117
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based [...] Read more.
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction. Full article
(This article belongs to the Special Issue Feature Papers in Stem Cells)
Show Figures

Figure 1

18 pages, 4008 KiB  
Review
Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases
by Shubhadeep Roychoudhury, Barnali Sinha, Birupakshya Paul Choudhury, Niraj Kumar Jha, Partha Palit, Surekha Kundu, Subhash C. Mandal, Adriana Kolesarova, Mokhtar Ibrahim Yousef, Janne Ruokolainen, Petr Slama and Kavindra Kumar Kesari
Antioxidants 2021, 10(8), 1205; https://doi.org/10.3390/antiox10081205 - 28 Jul 2021
Cited by 65 | Viewed by 7098
Abstract
Para-coumaric acid (p-CA) is a plant derived secondary metabolite belonging to the phenolic compounds. It is widely distributed in the plant kingdom and found mainly in fruits, vegetables, and cereals. Various in vivo and in vitro studies have revealed its scavenging and antioxidative [...] Read more.
Para-coumaric acid (p-CA) is a plant derived secondary metabolite belonging to the phenolic compounds. It is widely distributed in the plant kingdom and found mainly in fruits, vegetables, and cereals. Various in vivo and in vitro studies have revealed its scavenging and antioxidative properties in the reduction of oxidative stress and inflammatory reactions. This evidence-based review focuses on the protective role of p-CA including its therapeutic potential. p-CA and its conjugates possesses various bioactivities such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-melanogenic properties. Due to its potent free radical scavenging activity, it can mitigate the ill effects of various diseases including arthritis, neurological disorders, and cardio-vascular diseases. Recent studies have revealed that p-CA can ameliorate the harmful effects associated with oxidative stress in the reproductive system, also by inhibiting enzymes linked with erectile function. Full article
Show Figures

Figure 1

25 pages, 2029 KiB  
Review
Phytomedicines Targeting Cancer Stem Cells: Therapeutic Opportunities and Prospects for Pharmaceutical Development
by Piyush Kumar Gupta, Mrunmayee Saraff, Rekha Gahtori, Nidhi Negi, Surya Kant Tripathi, Jatin Kumar, Sanjay Kumar, Saad Hamad Aldhayan, Sugapriya Dhanasekaran, Mosleh Mohammad Abomughaid, Kamal Dua, Rohit Gundamaraju, Shreesh Ojha, Janne Ruokolainen, Niraj Kumar Jha and Kavindra Kumar Kesari
Pharmaceuticals 2021, 14(7), 676; https://doi.org/10.3390/ph14070676 - 15 Jul 2021
Cited by 19 | Viewed by 6909
Abstract
The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial–mesenchymal transition [...] Read more.
The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial–mesenchymal transition (EMT) and resulted in the development of aggressive tumors. CSCs have potential to modulate numerous signaling pathways including Wnt, Hh, and Notch, therefore increasing the stem-like characteristics of cancer cells. The raised expression of drug efflux pump and suppression of apoptosis has shown increased resistance with anti-cancer drugs. Among many agents which were shown to modulate these, the plant-derived bioactive agents appear to modulate these key regulators and were shown to remove CSCs. This review aims to comprehensively scrutinize the preclinical and clinical studies demonstrating the effects of phytocompounds on CSCs isolated from various tumors. Based on the available convincing literature from preclinical studies, with some clinical data, it is apparent that selective targeting of CSCs with plants, plant preparations, and plant-derived bioactive compounds, termed phytochemicals, may be a promising strategy for the treatment of relapsed cancers. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

22 pages, 4420 KiB  
Article
Vitamin K2 Modulates Organelle Damage and Tauopathy Induced by Streptozotocin and Menadione in SH-SY5Y Cells
by Shruti Shandilya, Kavindra Kumar Kesari and Janne Ruokolainen
Antioxidants 2021, 10(6), 983; https://doi.org/10.3390/antiox10060983 - 20 Jun 2021
Cited by 16 | Viewed by 5485
Abstract
Vitamin K2, known for its antioxidative and anti-inflammatory properties, can act as a potent neuroprotective molecule. Despite its action against mitochondrial dysfunction, the mechanism underlying the links between the protective effects of vitamin K2 and endoplasmic reticulum (ER) stress along with basal levels [...] Read more.
Vitamin K2, known for its antioxidative and anti-inflammatory properties, can act as a potent neuroprotective molecule. Despite its action against mitochondrial dysfunction, the mechanism underlying the links between the protective effects of vitamin K2 and endoplasmic reticulum (ER) stress along with basal levels of total tau protein and amyloid-beta 42 (Aβ42) has not been elucidated yet. To understand the neuroprotective effect of vitamin K2 during metabolic complications, SH-SY5Y cells were treated with streptozotocin for 24 h and menadione for 2 h in a dose-dependent manner, followed by post-treatment of vitamin K2 for 5 h. The modulating effects of vitamin K2 on cell viability, lactate dehydrogenase release, reactive oxygen species (ROS), mitochondrial membrane potential, ER stress marker (CHOP), an indicator of unfolded protein response (UPR), inositol requiring enzyme 1 (p-IRE1α), glycogen synthase kinase 3 (GSK3α/β), total tau and Aβ42 were studied. Results showed that vitamin K2 significantly reduces neuronal cell death by inhibiting cytotoxicity and ROS levels and helps in the retainment of mitochondrial membrane potential. Moreover, vitamin K2 significantly decreased the expression of CHOP protein along with the levels and the nuclear localization of p-IRE1α, thus showing its significant role in inhibiting chronic ER stress-mediated UPR and eventually cell death. In addition, vitamin K2 significantly down-regulated the expression of GSK3α/β together with the levels of total tau protein, with a petite effect on secreted Aβ42 levels. These results suggested that vitamin K2 alleviated mitochondrial damage, ER stress and tauopathy-mediated neuronal cell death, which highlights its role as new antioxidative therapeutics targeting related cellular processes. Full article
Show Figures

Figure 1

39 pages, 2925 KiB  
Review
Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction
by Shubhadeep Roychoudhury, Saptaparna Chakraborty, Arun Paul Choudhury, Anandan Das, Niraj Kumar Jha, Petr Slama, Monika Nath, Peter Massanyi, Janne Ruokolainen and Kavindra Kumar Kesari
Antioxidants 2021, 10(6), 837; https://doi.org/10.3390/antiox10060837 - 24 May 2021
Cited by 81 | Viewed by 13471
Abstract
Hypogonadism is an endocrine disorder characterized by inadequate serum testosterone production by the Leydig cells of the testis. It is triggered by alterations in the hypothalamic–pituitary–gonadal axis. Erectile dysfunction (ED) is another common disorder in men that involves an alteration in erectile response–organic, [...] Read more.
Hypogonadism is an endocrine disorder characterized by inadequate serum testosterone production by the Leydig cells of the testis. It is triggered by alterations in the hypothalamic–pituitary–gonadal axis. Erectile dysfunction (ED) is another common disorder in men that involves an alteration in erectile response–organic, relational, or psychological. The incidence of hypogonadism and ED is common in men aged over 40 years. Hypogonadism (including late-onset hypogonadism) and ED may be linked to several environmental factors-induced oxidative stresses. The factors mainly include exposure to pesticides, radiation, air pollution, heavy metals and other endocrine-disrupting chemicals. These environmental risk factors may induce oxidative stress and lead to hormonal dysfunctions. To better understand the subject, the study used many keywords, including “hypogonadism”, “late-onset hypogonadism”, “testosterone”, “erectile dysfunction”, “reactive oxygen species”, “oxidative stress”, and “environmental pollution” in major online databases, such as SCOPUS and PUBMED to extract relevant scientific information. Based on these parameters, this review summarizes a comprehensive insight into the important environmental issues that may have a direct or indirect association with hypogonadism and ED in men. The study concludes that environmental factors-induced oxidative stress may cause infertility in men. The hypothesis and outcomes were reviewed critically, and the mechanistic approaches are applied through oxidant-sensitive pathways. This study also provides reccomendations on future therapeutic interventions and protective measures against such adverse environmental factors-induced hypogonadism and ED. Full article
Show Figures

Figure 1

28 pages, 3622 KiB  
Review
Oxidative Stress in Cancer Cell Metabolism
by Saniya Arfin, Niraj Kumar Jha, Saurabh Kumar Jha, Kavindra Kumar Kesari, Janne Ruokolainen, Shubhadeep Roychoudhury, Brijesh Rathi and Dhruv Kumar
Antioxidants 2021, 10(5), 642; https://doi.org/10.3390/antiox10050642 - 22 Apr 2021
Cited by 460 | Viewed by 40174
Abstract
Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances [...] Read more.
Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism where they adjust to the high ROS by expressing elevated levels of antioxidant proteins to detoxify them while maintaining pro-tumorigenic signaling and resistance to apoptosis. Therefore, ROS manipulation can be a potential target for cancer therapies as cancer cells present an altered redox balance in comparison to their normal counterparts. In this review, we aim to provide an overview of the generation and sources of ROS within tumor cells, ROS-associated signaling pathways, their regulation by antioxidant defense systems, as well as the effect of elevated ROS production in tumor progression. It will provide an insight into how pro- and anti-tumorigenic ROS signaling pathways could be manipulated during the treatment of cancer. Full article
(This article belongs to the Special Issue Role of Natural Antioxidants in Free Radical Biology and Human Health)
Show Figures

Figure 1

17 pages, 3685 KiB  
Article
A Comparative Cross-Platform Meta-Analysis to Identify Potential Biomarker Genes Common to Endometriosis and Recurrent Pregnancy Loss
by Pokhraj Guha, Shubhadeep Roychoudhury, Sobita Singha, Jogen C. Kalita, Adriana Kolesarova, Qazi Mohammad Sajid Jamal, Niraj Kumar Jha, Dhruv Kumar, Janne Ruokolainen and Kavindra Kumar Kesari
Appl. Sci. 2021, 11(8), 3349; https://doi.org/10.3390/app11083349 - 8 Apr 2021
Cited by 4 | Viewed by 3905
Abstract
Endometriosis is characterized by unwanted growth of endometrial tissue in different locations of the female reproductive tract. It may lead to recurrent pregnancy loss, which is one of the worst curses for the reproductive age group of human populations around the world. Thus, [...] Read more.
Endometriosis is characterized by unwanted growth of endometrial tissue in different locations of the female reproductive tract. It may lead to recurrent pregnancy loss, which is one of the worst curses for the reproductive age group of human populations around the world. Thus, there is an urgent need for unveiling any common source of origin of both these diseases and connections, if any. Herein, we aimed to identify common potential biomarker genes of these two diseases via in silico approach using meta-analysis of microarray data. Datasets were selected for the study based on certain exclusion criteria. Those datasets were subjected to comparative meta-analyses for the identification of differentially expressed genes (DEGs), that are common to both diagnoses. The DEGs were then subjected to protein-protein networking and subsequent functional enrichment analyses for unveiling their role/function in connecting two diseases. From the analyses, 120 DEGs are reported to be significant out of which four genes have been found to be prominent. These include the CTNNB1, HNRNPAB, SNRPF and TWIST2 genes. The significantly enriched pathways based on the above-mentioned genes are mainly centered on signaling and developmental events. These findings could significantly elucidate the underlying molecular events in endometriosis-based recurrent miscarriages. Full article
(This article belongs to the Special Issue Towards a Systems Biology Approach)
Show Figures

Figure 1

37 pages, 3252 KiB  
Review
Current Understanding of Novel Coronavirus: Molecular Pathogenesis, Diagnosis, and Treatment Approaches
by Niraj Kumar Jha, Madhan Jeyaraman, Mahesh Rachamalla, Shreesh Ojha, Kamal Dua, Dinesh Kumar Chellappan, Sathish Muthu, Ankur Sharma, Saurabh Kumar Jha, Rashmi Jain, Naveen Jeyaraman, Prajwal GS, Rohit Satyam, Fahad Khan, Pratibha Pandey, Nitin Verma, Sandeep Kumar Singh, Shubhadeep Roychoudhury, Sunny Dholpuria, Janne Ruokolainen and Kavindra Kumar Kesariadd Show full author list remove Hide full author list
Immuno 2021, 1(1), 30-66; https://doi.org/10.3390/immuno1010004 - 26 Mar 2021
Cited by 18 | Viewed by 19555
Abstract
An outbreak of “Pneumonia of Unknown Etiology” occurred in Wuhan, China, in late December 2019. Later, the agent factor was identified and coined as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease was named coronavirus disease 2019 (COVID-19). In a shorter [...] Read more.
An outbreak of “Pneumonia of Unknown Etiology” occurred in Wuhan, China, in late December 2019. Later, the agent factor was identified and coined as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease was named coronavirus disease 2019 (COVID-19). In a shorter period, this newly emergent infection brought the world to a standstill. On 11 March 2020, the WHO declared COVID-19 as a pandemic. Researchers across the globe have joined their hands to investigate SARS-CoV-2 in terms of pathogenicity, transmissibility, and deduce therapeutics to subjugate this infection. The researchers and scholars practicing different arts of medicine are on an extensive quest to come up with safer ways to curb the pathological implications of this viral infection. A huge number of clinical trials are underway from the branch of allopathy and naturopathy. Besides, a paradigm shift on cellular therapy and nano-medicine protocols has to be optimized for better clinical and functional outcomes of COVID-19-affected individuals. This article unveils a comprehensive review of the pathogenesis mode of spread, and various treatment modalities to combat COVID-19 disease. Full article
Show Figures

Figure 1

22 pages, 4697 KiB  
Article
Lignans in Knotwood of Norway Spruce: Localisation with Soft X-ray Microscopy and Scanning Transmission Electron Microscopy with Energy Dispersive X-ray Spectroscopy
by Tuomas Mansikkala, Minna Patanen, Anna Kärkönen, Risto Korpinen, Andrey Pranovich, Takuji Ohigashi, Sufal Swaraj, Jani Seitsonen, Janne Ruokolainen, Marko Huttula, Pekka Saranpää and Riikka Piispanen
Molecules 2020, 25(13), 2997; https://doi.org/10.3390/molecules25132997 - 30 Jun 2020
Cited by 7 | Viewed by 6327
Abstract
Lignans are bioactive compounds that are especially abundant in the Norway spruce (Picea abies L. Karst.) knotwood. By combining a variety of chromatographic, spectroscopic and imaging techniques, we were able to quantify, qualify and localise the easily extractable lignans in the xylem [...] Read more.
Lignans are bioactive compounds that are especially abundant in the Norway spruce (Picea abies L. Karst.) knotwood. By combining a variety of chromatographic, spectroscopic and imaging techniques, we were able to quantify, qualify and localise the easily extractable lignans in the xylem tissue. The knotwood samples contained 15 different lignans according to the gas chromatography-mass spectrometry analysis. They comprised 16% of the knotwood dry weight and 82% of the acetone extract. The main lignans were found to be hydroxymatairesinols HMR1 and HMR2. Cryosectioned and resin-embedded ultrathin sections of the knotwood were analysed with scanning transmission X-ray microscopy (STXM). Cryosectioning was found to retain only lignan residues inside the cell lumina. In the resin-embedded samples, lignan was interpreted to be unevenly distributed inside the cell lumina, and partially confined in deposits which were either readily present in the lumina or formed when OsO4 used in staining reacted with the lignans. Furthermore, the multi-technique characterisation enabled us to obtain information on the chemical composition of the structural components of knotwood. A simple spectral analysis of the STXM data gave consistent results with the gas chromatographic methods about the relative amounts of cell wall components (lignin and polysaccharides). The STXM analysis also indicated that a torus of a bordered pit contained aromatic compounds, possibly lignin. Full article
(This article belongs to the Special Issue Recovery of Phytochemicals from Forest Materials)
Show Figures

Figure 1

17 pages, 3860 KiB  
Article
Plant-Derived Natural Biomolecule Picein Attenuates Menadione Induced Oxidative Stress on Neuroblastoma Cell Mitochondria
by Kavindra Kumar Kesari, Anupam Dhasmana, Shruti Shandilya, Neeraj Prabhakar, Ahmed Shaukat, Jinze Dou, Jessica M. Rosenholm, Tapani Vuorinen and Janne Ruokolainen
Antioxidants 2020, 9(6), 552; https://doi.org/10.3390/antiox9060552 - 25 Jun 2020
Cited by 28 | Viewed by 6876
Abstract
Several bioactive compounds are in use for the treatment of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Historically, willow (salix sp.) bark has been an important source of salisylic acid and other natural compounds with anti-inflammatory, antipyretic and analgesic properties. Among [...] Read more.
Several bioactive compounds are in use for the treatment of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Historically, willow (salix sp.) bark has been an important source of salisylic acid and other natural compounds with anti-inflammatory, antipyretic and analgesic properties. Among these, picein isolated from hot water extract of willow bark, has been found to act as a natural secondary metabolite antioxidant. The aim of this study was to investigate the unrevealed pharmacological action of picein. In silico studies were utilized to direct the investigation towards the neuroprotection abilities of picein. Our in vitro studies demonstrate the neuroprotective properties of picein by blocking the oxidative stress effects, induced by free radical generator 2-methyl-1,4-naphthoquinone (menadione, MQ), in neuroblastoma SH-SY5Y cells. Several oxidative stress-related parameters were evaluated to measure the protection for mitochondrial integrity, such as mitochondrial superoxide production, mitochondrial activity (MTT), reactive oxygen species (ROS) and live-cell imaging. A significant increase in the ROS level and mitochondrial superoxide production were measured after MQ treatment, however, a subsequent treatment with picein was able to mitigate this effect by decreasing their levels. Additionally, the mitochondrial activity was significantly decreased by MQ exposure, but a follow-up treatment with picein recovered the normal metabolic activity. In conclusion, the presented results demonstrate that picein can significantly reduce the level of MQ-induced oxidative stress on mitochondria, and thereby plays a role as a potent neuroprotectant. Full article
(This article belongs to the Special Issue Oxidative Stress and Neurodegenerative Disorders)
Show Figures

Graphical abstract

22 pages, 5893 KiB  
Article
Investigation of Precise Molecular Mechanistic Action of Tobacco-Associated Carcinogen ‘NNK’ Induced Carcinogenesis: A System Biology Approach
by Anukriti, Anupam Dhasmana, Swati Uniyal, Pallavi Somvanshi, Uma Bhardwaj, Meenu Gupta, Shafiul Haque, Mohtashim Lohani, Dhruv Kumar, Janne Ruokolainen and Kavindra Kumar Kesari
Genes 2019, 10(8), 564; https://doi.org/10.3390/genes10080564 - 26 Jul 2019
Cited by 10 | Viewed by 4182
Abstract
Cancer is the second deadliest disease listed by the WHO. One of the major causes of cancer disease is tobacco and consumption possibly due to its main component, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). A plethora of studies have been conducted in the past aiming to decipher [...] Read more.
Cancer is the second deadliest disease listed by the WHO. One of the major causes of cancer disease is tobacco and consumption possibly due to its main component, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). A plethora of studies have been conducted in the past aiming to decipher the association of NNK with other diseases. However, it is strongly linked with cancer development. Despite these studies, a clear molecular mechanism and the impact of NNK on various system-level networks is not known. In the present study, system biology tools were employed to understand the key regulatory mechanisms and the perturbations that will happen in the cellular processes due to NNK. To investigate the system level influence of the carcinogen, NNK rewired protein–protein interaction network (PPIN) was generated from 544 reported proteins drawn out from 1317 articles retrieved from PubMed. The noise was removed from PPIN by the method of modulation. Gene ontology (GO) enrichment was performed on the seed proteins extracted from various modules to find the most affected pathways by the genes/proteins. For the modulation, Molecular COmplex DEtection (MCODE) was used to generate 19 modules containing 115 seed proteins. Further, scrutiny of the targeted biomolecules was done by the graph theory and molecular docking. GO enrichment analysis revealed that mostly cell cycle regulatory proteins were affected by NNK. Full article
(This article belongs to the Special Issue The Role of Genotoxicity in Infertility and Cancer Development)
Show Figures

Figure 1

Back to TopTop