Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Authors = Ionela Andreea Neacsu ORCID = 0000-0003-3197-6455

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 11672 KiB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cu/Sr-Doped Hydroxyapatite with Prospective Applications for Bone Tissue Engineering
by Diana-Elena Radulescu, Bogdan Stefan Vasile, Otilia Ruxandra Vasile, Ionela Andreea Neacsu, Roxana Doina Trusca, Vasile-Adrian Surdu, Alexandra Catalina Birca, Georgiana Dolete, Cornelia-Ioana Ilie and Ecaterina Andronescu
J. Compos. Sci. 2025, 9(8), 427; https://doi.org/10.3390/jcs9080427 (registering DOI) - 7 Aug 2025
Abstract
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical [...] Read more.
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical characteristics and antibacterial activity, necessitating the development of novel strategies based on natural precursors and selective ion doping. The present study aims to explore the possibility of synthesizing hydroxyapatite through the co-precipitation method, followed by a microwave-assisted hydrothermal maturation process. The main CaO sources selected for this study are eggshells and mussel shells. Cu2+ and Sr2+ ions were added into the hydroxyapatite structure at concentrations of 1% and 5% to investigate their potential for biomedical applications. Furthermore, the morpho-structural and biological properties have been investigated. Results demonstrated the success of hydroxyapatite synthesis and ion incorporation into its chemical structure. Moreover, HAp samples exhibited significant antimicrobial properties, especially the samples doped with 5% Cu and Sr. Additionally, all samples presented good biological activity on MC3T3-E1 osteoblast cells, demonstrating good cellular viability of all samples. Therefore, by correlating the results, it could be concluded that the undoped and doped hydroxyapatite samples are suitable biomaterials to be further applied in orthopedic applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

23 pages, 12860 KiB  
Article
Antimicrobial Composite Films Based on Alginate–Chitosan with Honey, Propolis, Royal Jelly and Green-Synthesized Silver Nanoparticles
by Corina Dana Dumitru, Cornelia-Ioana Ilie, Ionela Andreea Neacsu, Ludmila Motelica, Ovidiu Cristian Oprea, Alexandra Ripszky, Silviu Mirel Pițuru, Bianca Voicu Bălașea, Florica Marinescu and Ecaterina Andronescu
Int. J. Mol. Sci. 2025, 26(14), 6809; https://doi.org/10.3390/ijms26146809 - 16 Jul 2025
Viewed by 370
Abstract
Honey, propolis or royal jelly are considered natural remedies with therapeutic properties since antiquity. Many papers explore the development of antimicrobial biomaterials based on individual bee products, but there is a lack of studies on their synergistic effects. Combining honey, propolis and royal [...] Read more.
Honey, propolis or royal jelly are considered natural remedies with therapeutic properties since antiquity. Many papers explore the development of antimicrobial biomaterials based on individual bee products, but there is a lack of studies on their synergistic effects. Combining honey, propolis and royal jelly with silver nanoparticles in a biopolymer matrix offers a synergistic strategy to combat antibiotic-resistant bacterial infections. This approach supports progress in wound healing, soft tissue engineering and other domains where elimination of the microorganisms is needed like food packaging. In this study we have obtained antimicrobial films based on bee products and silver nanoparticles (AgNPs) incorporated in an alginate–chitosan blend. The novel biomaterials were analyzed by UV-Vis, fluorescence and FTIR spectroscopy or microscopy, SEM and thermal analysis. Antibacterial tests were conducted against both Gram-positive and Gram-negative bacteria, while the antifungal properties were tested against Candida albicans. The diameters for growth inhibition zones were up to 10 mm for bacterial strains and 8 mm for the fungal strain. Additionally, cytotoxicity assays were performed to evaluate the biocompatibility of the materials, the results indicating that the combination of honey, propolis, royal jelly and AgNPs does not produce synergistic toxicity. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 59613 KiB  
Article
Tailoring Zinc Oxide Nanoparticles via Microwave-Assisted Hydrothermal Synthesis for Enhanced Antibacterial Properties
by Irina Elena Doicin, Manuela Daniela Preda, Ionela Andreea Neacsu, Vladimir Lucian Ene, Alexandra Catalina Birca, Bogdan Stefan Vasile and Ecaterina Andronescu
Appl. Sci. 2024, 14(17), 7854; https://doi.org/10.3390/app14177854 - 4 Sep 2024
Cited by 2 | Viewed by 2648
Abstract
In recent years, significant advancements in nanotechnology have facilitated the synthesis of zinc oxide (ZnO) nanoparticles with tailored sizes and shapes, offering versatile applications across various fields, particularly in biomedicine. ZnO’s multifunctional properties, such as semiconductor behavior, luminescence, photocatalytic activity, and antibacterial efficacy, [...] Read more.
In recent years, significant advancements in nanotechnology have facilitated the synthesis of zinc oxide (ZnO) nanoparticles with tailored sizes and shapes, offering versatile applications across various fields, particularly in biomedicine. ZnO’s multifunctional properties, such as semiconductor behavior, luminescence, photocatalytic activity, and antibacterial efficacy, make it highly attractive for biomedical applications. This study focuses on synthesizing ZnO nanoparticles via the microwave-assisted hydrothermal method, varying the precursor concentrations (0.3488 mol/L, 0.1744 mol/L, 0.0872 mol/L, 0.0436 mol/L, and 0.0218 mol/L) and reaction times (15, 30, and 60 min). Characterization techniques, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, BET surface area analysis, and Fourier transform infrared spectroscopy were employed to assess the structural, morphological, and chemical properties. The predominant morphology is observed to be platelets, which exhibit a polygonal shape with beveled corners and occasionally include short rod-like inserts. The thickness of the platelets varies between 10 nm and 50 nm, increasing with the concentration of Zn2+ in the precursor solution. Preliminary antimicrobial studies indicated that all strains (S. aureus, E. coli, and C. albicans) were sensitive to interaction with ZnO, exhibiting inhibition zone diameters greater than 10 mm, particularly for samples with lower precursor concentrations. Cell viability studies on human osteoblast cells demonstrated good compatibility, affirming the potential biomedical applicability of synthesized ZnO nanoparticles. This research underscores the influence of synthesis parameters on the properties of ZnO nanoparticles, offering insights for optimizing their design for biomedical applications. Full article
Show Figures

Figure 1

29 pages, 8805 KiB  
Article
Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration
by Alexandra-Cristina Burdusel, Ionela Andreea Neacsu, Alexandra Catalina Birca, Cristina Chircov, Alexandru-Mihai Grumezescu, Alina Maria Holban, Carmen Curutiu, Lia Mara Ditu, Miruna Stan and Ecaterina Andronescu
J. Funct. Biomater. 2023, 14(7), 378; https://doi.org/10.3390/jfb14070378 - 19 Jul 2023
Cited by 14 | Viewed by 2528
Abstract
Orthopedic bone graft infections are major complications in today’s medicine, and the demand for antibacterial treatments is expanding because of the spread of antibiotic resistance. Various compositions of hydroxyapatite (HAp) in which Calcium (Ca2+) ions are substituted with Cerium (Ce3+ [...] Read more.
Orthopedic bone graft infections are major complications in today’s medicine, and the demand for antibacterial treatments is expanding because of the spread of antibiotic resistance. Various compositions of hydroxyapatite (HAp) in which Calcium (Ca2+) ions are substituted with Cerium (Ce3+) and Magnesium (Mg2+) are herein proposed as biomaterials for hard tissue implants. This approach gained popularity in recent years and, in the pursuit of mimicking the natural bone mineral’s composition, over 70 elements of the Periodic Table were already reported as substituents into HAp structure. The current study aimed to create materials based on HAp, Hap-Ce, and Hap-Mg using hydrothermal maturation in the microwave field. This route has been considered a novel, promising, and effective way to obtain monodisperse, fine nanoparticles while easily controlling the synthesis parameters. The synthesized HAp powders were characterized morphologically and structurally by XRD diffraction, Dynamic light scattering, zeta potential, FTIR spectrometry, and SEM analysis. Proliferation and morphological analysis on osteoblast cell cultures were used to demonstrate the cytocompatibility of the produced biomaterials. The antimicrobial effect was highlighted in the synthesized samples, especially for hydroxyapatite substituted with cerium. Therefore, the samples of HAp substituted with cerium or magnesium are proposed as biomaterials with enhanced osseointegration, also having the capacity to reduce device-associated infections. Full article
Show Figures

Figure 1

22 pages, 6326 KiB  
Article
Piezoelectric Biocomposites for Bone Grafting in Dentistry
by Cristina Rodica Dumitrescu, Ionela Andreea Neacsu, Roxana Trusca, Roxana Cristina Popescu, Iuliana Raut, Mariana Constantin and Ecaterina Andronescu
Polymers 2023, 15(11), 2446; https://doi.org/10.3390/polym15112446 - 25 May 2023
Cited by 11 | Viewed by 2934
Abstract
In this research, Hydroxyapatite—Potassium, Sodium Niobate—Chitosan (HA-KNN-CSL) biocomposites were synthesized, both as hydrogel and ultra-porous scaffolds, to offer two commonly used alternatives to biomaterials in dental clinical practice. The biocomposites were obtained by varying the content of low deacetylated chitosan as matrix phase, [...] Read more.
In this research, Hydroxyapatite—Potassium, Sodium Niobate—Chitosan (HA-KNN-CSL) biocomposites were synthesized, both as hydrogel and ultra-porous scaffolds, to offer two commonly used alternatives to biomaterials in dental clinical practice. The biocomposites were obtained by varying the content of low deacetylated chitosan as matrix phase, mesoporous hydroxyapatite nano-powder, and potassium–sodium niobate (K0.47Na0.53NbO3) sub-micron-sized powder. The resulting materials were characterized from physical, morpho-structural, and in vitro biological points of view. The porous scaffolds were obtained by freeze-drying the composite hydrogels and had a specific surface area of 18.4—24 m2/g and a strong ability to retain fluid. Chitosan degradation was studied for 7 and 28 days of immersion in simulated body fluid without enzymatic presence. All synthesized compositions proved to be biocompatible in contact with osteoblast-like MG-63 cells and showed antibacterial effects. The best antibacterial effect was shown by the 10HA-90KNN-CSL hydrogel composition against Staphylococcus aureus and the fungal strain Candida albicans, while a weaker effect was observed for the dry scaffold. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymer Scaffolds for Tissue Engineering)
Show Figures

Graphical abstract

16 pages, 6515 KiB  
Article
Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications
by Andrada Elena Alecu, Gabriel-Costin Balaceanu, Adrian Ionut Nicoara, Ionela Andreea Neacsu and Cristina Busuioc
Materials 2022, 15(19), 6942; https://doi.org/10.3390/ma15196942 - 6 Oct 2022
Cited by 9 | Viewed by 2275
Abstract
Due to the urgent need to develop and improve biomaterials, the present article proposes a new strategy to obtain porous scaffolds based on forsterite (Mg2SiO4) for bone tissue regeneration. The main objective is to restore and improve bone function, [...] Read more.
Due to the urgent need to develop and improve biomaterials, the present article proposes a new strategy to obtain porous scaffolds based on forsterite (Mg2SiO4) for bone tissue regeneration. The main objective is to restore and improve bone function, providing a stable environment for regeneration. The usage of magnesium silicate relies on its mechanical properties being superior to hydroxyapatite and, in general, to calcium phosphates, as well as its high biocompatibility, and antibacterial properties. Mg2SiO4 powder was obtained using the sol-gel method, which was calcinated at 800 °C for 2 h; then, part of the powder was further used to make porous ceramics by mixing it with a porogenic agent (e.g., sucrose). The raw ceramic bodies were subjected to two sintering treatments, at 1250 or 1320 °C, and the characterization results were discussed comparatively. The porogenic agent did not influence the identified phases or the samples’ crystallinity and was efficiently removed during the heat treatment. Moreover, the effect of the porogenic agent no longer seems significant after sintering at 1250 °C; the difference in porosity between the two ceramics was negligible. When analysing the in vitro cytotoxicity of the samples, the ones that were porous and treated at 1320 °C showed slightly better cell viability, with the cells appearing to adhere more easily to their surface. Full article
Show Figures

Figure 1

19 pages, 8676 KiB  
Article
Alkali Niobate Powder Synthesis Using an Emerging Microwave-Assisted Hydrothermal Method
by Cristina-Rodica Dumitrescu, Vasile-Adrian Surdu, Hermine Stroescu, Adrian-Ionut Nicoara, Ionela Andreea Neacsu, Roxana Trusca, Ecaterina Andronescu and Lucian Toma Ciocan
Materials 2022, 15(15), 5410; https://doi.org/10.3390/ma15155410 - 6 Aug 2022
Cited by 5 | Viewed by 2395
Abstract
For more than five decades, alkali niobate-based materials (KxNa1−xNbO3) have been one of the most promising lead-free piezoelectric materials researched to be used in electronics, photocatalysis, energy storage/conversion and medical applications, due to their important health [...] Read more.
For more than five decades, alkali niobate-based materials (KxNa1−xNbO3) have been one of the most promising lead-free piezoelectric materials researched to be used in electronics, photocatalysis, energy storage/conversion and medical applications, due to their important health and environmentally friendly nature. In this paper, our strategy was to synthetize the nearest reproductible composition to KxNa1−xNbO3 (KNN) with x = 0.5, placed at the limit of the morphotropic phase boundary (MPB) with the presence of both polymorphic phases, orthorhombic and tetragonal. The wet synthesis route was chosen to make the mix crystal powders, starting with the suspension preparation of Nb2O5 powder and KOH and NaOH alkaline solutions. Hydrothermal microwave-assisted maturation (HTMW), following the parameter variation T = 200–250 °C, p = 47–60 bar and dwelling time of 30–90 min, was performed. All powders therefore synthesized were entirely KxN1−xNbO3 solid solutions with x = 0.06–0.69, and the compositional, elemental, structural and morphological characterization highlighted polycrystalline particle assemblage with cubic and prismatic morphology, with sizes between 0.28 nm and 2.95 μm and polymorphic O-T phase coexistence, and a d33 piezoelectric constant under 1 pC/N of the compacted unsintered and unpoled discs were found. Full article
(This article belongs to the Special Issue Advanced Piezoelectric Materials: Science and Technology)
Show Figures

Figure 1

18 pages, 8199 KiB  
Article
Fly-Ash Evaluation as Potential EOL Material Replacement of Cement in Pastes: Morpho-Structural and Physico-Chemical Properties Assessment
by Bogdan Stefan Vasile, Adrian-Ionut Nicoara, Vasile-Adrian Surdu, Vladimir Lucian Ene, Ionela Andreea Neacsu, Alexandra Elena Stoica, Ovidiu Oprea, Iulian Boerasu, Roxana Trusca, Mirijam Vrabec, Blaz Miklavic, Saso Sturm, Cleva Ow-Yang, Mehmet Ali Gulgun and Zeynep Basaran Bundur
Materials 2022, 15(9), 3092; https://doi.org/10.3390/ma15093092 - 24 Apr 2022
Cited by 1 | Viewed by 2630
Abstract
The main objective of the study was to produce alternative binder materials, obtained with low cost, low energy consumption, and low CO2 production, by regenerating end-of-life (EOL) materials from mineral deposits, to replace ordinary Portland cement (OPC). The materials analyzed were ash [...] Read more.
The main objective of the study was to produce alternative binder materials, obtained with low cost, low energy consumption, and low CO2 production, by regenerating end-of-life (EOL) materials from mineral deposits, to replace ordinary Portland cement (OPC). The materials analyzed were ash and slag from the Turceni thermal power plant deposit, Romania. These were initially examined for morphology, mineralogical composition, elemental composition, degree of crystallinity, and heating behavior, to determine their ability to be used as a potential source of supplementary cementitious materials (SCM) and to establish the activation and transformation temperature in the SCM. The in-situ pozzolanic behavior of commercial cement, as well as cement mixtures with different percentages of ash addition, were further observed. The mechanical resistance, water absorption, sorptivity capacity, resistance to alkali reactions (ASR), corrosion resistance, and resistance to reaction with sulfates were evaluated in this study using low-vacuum scanning electron microscopy. Full article
Show Figures

Figure 1

29 pages, 3036 KiB  
Review
Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering
by Corina Dana Dumitru, Ionela Andreea Neacsu, Alexandru Mihai Grumezescu and Ecaterina Andronescu
Pharmaceutics 2022, 14(4), 750; https://doi.org/10.3390/pharmaceutics14040750 - 30 Mar 2022
Cited by 38 | Viewed by 6785
Abstract
Skin tissue regeneration is one of the population’s most common problems, and the complications that may appear in the healing process can have detrimental consequences. An alternative to conventional treatments could be represented by sustainable materials based on natural products, such as honey [...] Read more.
Skin tissue regeneration is one of the population’s most common problems, and the complications that may appear in the healing process can have detrimental consequences. An alternative to conventional treatments could be represented by sustainable materials based on natural products, such as honey and its derivates (propolis, royal jelly, bee pollen, beeswax, and bee venom). They exhibit significant inhibitory activities against bacteria and have great potential in dermal tissue regeneration. Research in the pharmaceutical field demonstrates that conventional medication combined with bee products can deliver better results. The advantages include minimizing side effects and maintaining the same effectiveness by using low concentrations of antibiotic, anti-inflammatory, or chemotherapy drugs. Several studies suggested that bee products can replace the antimicrobial activity and efficiency of antibiotics, but further investigation is needed to establish a topical mixture’s potential, including honey, royal jelly, and propolis. Bee products seem to complete each other’s deficiencies, and their mixture may have a better impact on the wound healing process. The topic addressed in this paper highlights the usefulness of honey, propolis, royal jelly, bee pollen, beeswax, and bee venom in the re-epithelization process and against most common bacterial infections. Full article
Show Figures

Figure 1

27 pages, 22400 KiB  
Review
Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering
by Diana-Elena Radulescu, Ionela Andreea Neacsu, Alexandru-Mihai Grumezescu and Ecaterina Andronescu
Polymers 2022, 14(5), 899; https://doi.org/10.3390/polym14050899 - 24 Feb 2022
Cited by 52 | Viewed by 5340
Abstract
In recent years, the number of people needing bone replacements for the treatment of defects caused by chronic diseases or accidents has continuously increased. To solve these problems, tissue engineering has gained significant attention in the biomedical field, by focusing on the development [...] Read more.
In recent years, the number of people needing bone replacements for the treatment of defects caused by chronic diseases or accidents has continuously increased. To solve these problems, tissue engineering has gained significant attention in the biomedical field, by focusing on the development of suitable materials that improve osseointegration and biologic activity. In this direction, the development of an ideal material that provides good osseointegration, increased antimicrobial activity and preserves good mechanical properties has been the main challenge. Currently, bone tissue engineering focuses on the development of materials with tailorable properties, by combining polymers and ceramics to meet the necessary complex requirements. This study presents the main polymers applied in tissue engineering, considering their advantages and drawbacks. Considering the potential disadvantages of polymers, improving the applicability of the material and the combination with a ceramic material is the optimum pathway to increase the mechanical stability and mineralization process. Thus, ceramic materials obtained from natural sources (e.g., hydroxyapatite) are preferred to improve bioactivity, due to their similarity to the native hydroxyapatite found in the composition of human bone. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymer Scaffolds for Tissue Engineering)
Show Figures

Graphical abstract

30 pages, 7931 KiB  
Review
New Insights of Scaffolds Based on Hydrogels in Tissue Engineering
by Denisa-Maria Radulescu, Ionela Andreea Neacsu, Alexandru-Mihai Grumezescu and Ecaterina Andronescu
Polymers 2022, 14(4), 799; https://doi.org/10.3390/polym14040799 - 18 Feb 2022
Cited by 124 | Viewed by 9434
Abstract
In recent years, biomaterials development and characterization for new applications in regenerative medicine or controlled release represent one of the biggest challenges. Tissue engineering is one of the most intensively studied domain where hydrogels are considered optimum applications in the biomedical field. The [...] Read more.
In recent years, biomaterials development and characterization for new applications in regenerative medicine or controlled release represent one of the biggest challenges. Tissue engineering is one of the most intensively studied domain where hydrogels are considered optimum applications in the biomedical field. The delicate nature of hydrogels and their low mechanical strength limit their exploitation in tissue engineering. Hence, developing new, stronger, and more stable hydrogels with increased biocompatibility, is essential. However, both natural and synthetic polymers possess many limitations. Hydrogels based on natural polymers offer particularly high biocompatibility and biodegradability, low immunogenicity, excellent cytocompatibility, variable, and controllable solubility. At the same time, they have poor mechanical properties, high production costs, and low reproducibility. Synthetic polymers come to their aid through superior mechanical strength, high reproducibility, reduced costs, and the ability to regulate their composition to improve processes such as hydrolysis or biodegradation over variable periods. The development of hydrogels based on mixtures of synthetic and natural polymers can lead to the optimization of their properties to obtain ideal scaffolds. Also, incorporating different nanoparticles can improve the hydrogel’s stability and obtain several biological effects. In this regard, essential oils and drug molecules facilitate the desired biological effect or even produce a synergistic effect. This study’s main purpose is to establish the main properties needed to develop sustainable polymeric scaffolds. These scaffolds can be applied in tissue engineering to improve the tissue regeneration process without producing other side effects to the environment. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymer Scaffolds for Tissue Engineering)
Show Figures

Figure 1

12 pages, 1490 KiB  
Article
Thermally Activated Al(OH)3 Part II—Effect of Different Thermal Treatments
by Bogdan Stefan Vasile, Gheorghe Dobra, Sorin Iliev, Lucian Cotet, Ionela Andreea Neacsu, Vasile Adrian Surdu, Adrian Ionut Nicoara, Alina Boiangiu and Laurențiu Filipescu
Ceramics 2021, 4(4), 564-575; https://doi.org/10.3390/ceramics4040040 - 11 Oct 2021
Cited by 13 | Viewed by 7528
Abstract
In this paper, the thermal decomposition of crystalline Al(OH)3 was studied over the temperature range of 260–400 °C for particles with a size between 10 and 150 µm. The weight losses and thermal effects occurring in each of the dehydration process were [...] Read more.
In this paper, the thermal decomposition of crystalline Al(OH)3 was studied over the temperature range of 260–400 °C for particles with a size between 10 and 150 µm. The weight losses and thermal effects occurring in each of the dehydration process were assessed using thermogravimetry (TG) and differential scanning calorimetry (DSC) thermal analysis. X-ray diffraction (XRD) patterns, refined by the Rietveld method, were used for mineral phase identification, phase composition analysis, and crystallinity degree determination. Moreover, the particle size distributions and their corresponding D10, D50, and D90 numeric values were determined with a laser analyzer. We observed a strong relationship between the calcination temperature, the initial gibbsite grade particle size, and the crystallinity of the resulting powders. Hence, for all endothermic effects identified by DSC, the associated temperature values significantly decreased insofar as the particle dimensions decreased. When the gibbsite was calcined at a low temperature, we identified small amounts of boehmite phase along with amorphous new phases and unconverted gibbsite, while the powders calcined at 400 °C gradually yielded a mixture of boehmite and crystalized γ-Al2O3. The crystallinity % of all phase transition products declined with the increase in particle size or temperature for all the samples. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

19 pages, 6161 KiB  
Article
Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and In Vitro Behavior
by Cristina Rodica Dumitrescu, Ionela Andreea Neacsu, Vasile Adrian Surdu, Adrian Ionut Nicoara, Florin Iordache, Roxana Trusca, Lucian Toma Ciocan, Anton Ficai and Ecaterina Andronescu
Nanomaterials 2021, 11(9), 2289; https://doi.org/10.3390/nano11092289 - 2 Sep 2021
Cited by 43 | Viewed by 4878
Abstract
This research focused on the synthesis of apatite, starting from a natural biogenic calcium source (egg-shells) and its chemical and morpho-structural characterization in comparison with two commercial xenografts used as a bone substitute in dentistry. The synthesis route for the hydroxyapatite powder was [...] Read more.
This research focused on the synthesis of apatite, starting from a natural biogenic calcium source (egg-shells) and its chemical and morpho-structural characterization in comparison with two commercial xenografts used as a bone substitute in dentistry. The synthesis route for the hydroxyapatite powder was the microwave-assisted hydrothermal technique, starting from annealed egg-shells as the precursor for lime and di-base ammonium phosphate as the phosphate precursor. The powders were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), X-ray fluorescence spectroscopy (XRF), and cytotoxicity assay in contact with amniotic fluid stem cell (AFSC) cultures. Compositional and structural similarities or differences between the powder synthesized from egg-shells (HA1) and the two commercial xenograft powders—Bio-Oss®, totally deproteinized cortical bovine bone, and Gen-Os®, partially deproteinized porcine bone—were revealed. The HA1 specimen presented a single mineral phase as polycrystalline apatite with a high crystallinity (Xc 0.92), a crystallite size of 43.73 nm, preferential growth under the c axes (002) direction, where it mineralizes in bone, a nano-rod particle morphology, and average lengths up to 77.29 nm and diameters up to 21.74 nm. The surface of the HA1 nanoparticles and internal mesopores (mean size of 3.3 ± 1.6 nm), acquired from high-pressure hydrothermal maturation, along with the precursor’s nature, could be responsible for the improved biocompatibility, biomolecule adhesion, and osteoconductive abilities in bone substitute applications. The cytotoxicity assay showed a better AFSC cell viability for HA1 powder than the commercial xenografts did, similar oxidative stress to the control sample, and improved results compared with Gen-Os. The presented preliminary biocompatibility results are promising for bone tissue regeneration applications of HA1, and the study will continue with further tests on osteoblast differentiation and mineralization. Full article
(This article belongs to the Special Issue Novel Nano-Engineered Biomaterials for Bone Tissue Engineering)
Show Figures

Figure 1

13 pages, 8786 KiB  
Article
Thermally Activated Al(OH)3: Part I—Morphology and Porosity Evaluation
by Bogdan Stefan Vasile, Gheorghe Dobra, Sorin Iliev, Lucian Cotet, Ionela Andreea Neacsu, Adrian Ionut Nicoara, Vasile Adrian Surdu, Alina Boiangiu and Laurențiu Filipescu
Ceramics 2021, 4(2), 265-277; https://doi.org/10.3390/ceramics4020021 - 3 Jun 2021
Cited by 5 | Viewed by 4633
Abstract
Aluminum hydroxide is an essential material for the industrial production of ceramics (especially insulators and refractories), desiccants, absorbents, flame retardants, filers for plastics and rubbers, catalysts, and various construction materials. The calcination process of Al(OH)3 first induces dehydration and, finally, results in [...] Read more.
Aluminum hydroxide is an essential material for the industrial production of ceramics (especially insulators and refractories), desiccants, absorbents, flame retardants, filers for plastics and rubbers, catalysts, and various construction materials. The calcination process of Al(OH)3 first induces dehydration and, finally, results in α-Al2O3 formation. Nevertheless, this process contains various intermediary steps and has been proven to be complicated due to the development of numerous transitional alumina. Each step of the investigation is vital for the entire process because the final properties of materials based on aluminum trihydroxide are determined by their phase composition, morphology, porosity, etc. In this paper, five dried, milled, and size-classified aluminum hydroxide specimens were thermally treated at 260, 300, and 400 °C; then, they were studied in order to identify the effects of temperature on their properties, such as particle morphology, specific surface area, pore size, and pore distribution. The major oxide compounds identified in all samples were characteristic of bauxite—namely, Al2O3 * 3H2O, SiO2, Fe2O3, Na2O, and CaO. Particles with smaller sizes (<10 µm = 76.28%) presented the highest humidity content (~5 wt.%), while all samples registered a mass loss of ~25 wt.% on ignition at 400 °C. The identified particles had the shapes of hexagonal or quasi-hexagonal platelets and resulted in large spherulitic concretions. The obtained results suggest that ceramic powders calcined at 400 °C should be used for applications as adsorbents or catalysts due to their high specific area of about 200–240 m2/g and their small pore width (3–3.5 nm). Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

19 pages, 5806 KiB  
Article
Collagen-Carboxymethylcellulose Biocomposite Wound-Dressings with Antimicrobial Activity
by Ionela Andreea Neacsu, Sorina-Alexandra Leau, Stefania Marin, Alina Maria Holban, Bogdan-Stefan Vasile, Adrian-Ionut Nicoara, Vladimir Lucian Ene, Coralia Bleotu, Mădălina Georgiana Albu Kaya and Anton Ficai
Materials 2021, 14(5), 1153; https://doi.org/10.3390/ma14051153 - 1 Mar 2021
Cited by 31 | Viewed by 4194
Abstract
Microbial infections associated with skin diseases are frequently investigated since they impact on the progress of pathology and healing. The present work proposes the development of freeze-dried, glutaraldehyde cross-linked, and non-cross-linked biocomposite dressings with a porous structure, which may assist the reepithelization process [...] Read more.
Microbial infections associated with skin diseases are frequently investigated since they impact on the progress of pathology and healing. The present work proposes the development of freeze-dried, glutaraldehyde cross-linked, and non-cross-linked biocomposite dressings with a porous structure, which may assist the reepithelization process through the presence of collagen and carboxymethylcellulose, along with a therapeutic antimicrobial effect, due to silver nanoparticles (AgNPs) addition. Phisyco-chemical characterization revealed the porous morphology of the obtained freeze-dried composites, the presence of high crystalline silver nanoparticles with truncated triangular and polyhedral morphologies, as well as the characteristic absorption bands of collagen, silver, and carboxymethylcellulose. In vitro tests also assessed the stability, functionality, and the degradability rate of the obtained wound-dressings. Antimicrobial assay performed on Gram-negative (Escherichia coli), Gram-positive (Staphyloccocus aureus) bacteria, and yeast (Candida albicans) models demonstrated that composite wound dressings based on collagen, carboxymethylcellulose, and AgNPs are suitable for skin lesions because they prevent the risk of infection and have prospective wound healing capacity. Moreover, the cell toxicity studies proved that the obtained materials can be used in long time treatments, with no cytotoxic effects. Full article
(This article belongs to the Special Issue Novel Materials for Antimicrobial Application)
Show Figures

Figure 1

Back to TopTop