Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Authors = Gianguido Ramis ORCID = 0000-0001-8510-4842

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 11136 KiB  
Article
Oxidative Steam Reforming of Methanol over Cu-Based Catalysts
by Matteo Tommasi, Davide Ceriotti, Alice Gramegna, Simge Naz Degerli, Gianguido Ramis and Ilenia Rossetti
Catalysts 2024, 14(11), 759; https://doi.org/10.3390/catal14110759 - 28 Oct 2024
Cited by 3 | Viewed by 1664
Abstract
Several Cu and Ni-based catalysts were synthetized over Ce-based supports, either pure or mixed with different amounts of alumina (1:2 and 1:3 mol/mol). Different metal loadings (10–40 wt%) and preparation methods (wet impregnation, co-precipitation, and flame-spray pyrolysis—FSP) were compared for the oxidative steam [...] Read more.
Several Cu and Ni-based catalysts were synthetized over Ce-based supports, either pure or mixed with different amounts of alumina (1:2 and 1:3 mol/mol). Different metal loadings (10–40 wt%) and preparation methods (wet impregnation, co-precipitation, and flame-spray pyrolysis—FSP) were compared for the oxidative steam reforming of methanol. Characterization of the catalysts has been performed, e.g., through XRD, BET, XPS, TPR, SEM, and EDX analyses. All the catalysts have been tested in a bench-scale continuous setup. The hydrogen yield and methanol conversion obtained have been correlated with the operating conditions, metal content, crystallinity of the catalyst particles, total surface area, and with the interaction of the metal with the support. A Cu loading of 20% wt/wt was optimal, while the presence of alumina was not beneficial, decreasing catalyst activity at low temperatures compared with catalysts supported on pure CeO2. Ni-based catalysts were a possible alternative, but the activity towards the methanation reaction at relatively high temperatures decreased inevitably the hydrogen yield. Durability and deactivation tests showed that the best-performing catalyst, 20% wt. Cu/CeO2 prepared through coprecipitation was stable for a long period of time. Full methanol conversion was achieved at 280 °C, and the highest yield of H2 was ca. 80% at 340 °C, higher than the literature data. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

72 pages, 21240 KiB  
Review
Reactor and Plant Designs for the Solar Photosynthesis of Fuels
by Simge Naz Degerli, Alice Gramegna, Matteo Tommasi, Gianguido Ramis and Ilenia Rossetti
Energies 2024, 17(13), 3112; https://doi.org/10.3390/en17133112 - 24 Jun 2024
Cited by 6 | Viewed by 2304
Abstract
Solar-boosted photo-technology stands out as a powerful strategy for photosynthesis and photocatalytic processes due to its minimal energy requirements, cost-effectiveness and operation under milder, environmentally friendly conditions compared to conventional thermocatalytic options. The design and development of photocatalysts have received a great deal [...] Read more.
Solar-boosted photo-technology stands out as a powerful strategy for photosynthesis and photocatalytic processes due to its minimal energy requirements, cost-effectiveness and operation under milder, environmentally friendly conditions compared to conventional thermocatalytic options. The design and development of photocatalysts have received a great deal of attention, whereas photoreactor development must be studied deeper to enable the design of efficient devices for practical exploitation. Furthermore, scale-up issues are important for this application, since light distribution through the photoreactor is a concurrent factor. This review represents a comprehensive study on the development of photoreactors to be used mainly for the photoreduction of CO2 to fuels, but with concepts easily transferable to other photosynthetic applications such as ammonia synthesis and water splitting, or wastewater treatment, photovoltaics combined to photoreactors, etc. The primary categories of photoreactors are thoroughly examined. It is also explained which parameters influence the design of a photoreactor and next-generation high-pressure photoreactors are also discussed. Last but not least, current technologies for solar concentrators are recalled, considering their possible integration within the photoreactor. While many reviews deal with photocatalytic materials, in the authors’ view, photoreactors with significant scale and their merged devices with solar concentrators are still unexploited solutions. These are the key to boost the efficiency of these processes towards commercial viability; thus, the aim of this review is to summarise the main findings on solar photoreactors for the photoreduction of CO2 and for related applications. Full article
Show Figures

Figure 1

20 pages, 2727 KiB  
Article
Highly Efficient and Effective Process Design for High-Pressure CO2 Photoreduction over Supported Catalysts
by Matteo Tommasi, Francesco Conte, Mohammad Imteyaz Alam, Gianguido Ramis and Ilenia Rossetti
Energies 2023, 16(13), 4990; https://doi.org/10.3390/en16134990 - 27 Jun 2023
Cited by 2 | Viewed by 2186
Abstract
The photocatalytic reduction of CO2 into solar fuel is considered a promising approach to solving the energy crisis and mitigating the environmental pollution caused by anthropogenic CO2 emission. Some powder photocatalysts have been demonstrated as efficient, but their drifting properties, along [...] Read more.
The photocatalytic reduction of CO2 into solar fuel is considered a promising approach to solving the energy crisis and mitigating the environmental pollution caused by anthropogenic CO2 emission. Some powder photocatalysts have been demonstrated as efficient, but their drifting properties, along with difficult separation (catalyst and product), make continuous mode reaction very challenging, particularly in the liquid phase. In order to make this process commercially viable and economically more efficient, we have developed a simple and scalable method for immobilizing TiO2 P25 over the surface of glass slides using an organic-based surfactant. Improved adhesion properties and the homogeneous dispersion of catalyst nanoparticles were achieved. A holder was designed with 3D printing technology in such a way that it can hold up to six slides that can be dipped simultaneously into the suspension or solution of desired materials for a uniform and homogeneous deposition. The resulting surfaces of the dip-coated materials (e.g., TiO2 P25) were further modified by adding metallic nanoparticles and thoroughly characterized via XRD, DRS UV–Vis, SEM, and SEM–EDX. Photocatalytic tests have been performed for two major applications, viz., hydrogen production via the photoreforming of glucose and the photoreduction of CO2 into different solar fuels. The latter tests were performed in a specially designed, high-pressure reactor with Ag/P25 supported catalysts, which exhibited about three times higher formic acid productivity (ca. 20 mol/kgcat h) compared to the dispersed catalyst, with enhanced stability and recoverability. It is to note that catalysts deposited on the glass slides can easily be recovered and the materials did not show any weight loss. To the best of our knowledge, the obtained formic acid productivity is highest among the published literature. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 5317 KiB  
Article
Carbon Nitride-Based Catalysts for High Pressure CO2 Photoreduction
by Francesco Conte, Elisa I. García-López, Giuseppe Marcì, Claudia L. M. Bianchi, Gianguido Ramis and Ilenia Rossetti
Catalysts 2022, 12(12), 1628; https://doi.org/10.3390/catal12121628 - 12 Dec 2022
Cited by 5 | Viewed by 2294
Abstract
In the current research, the productivity of CO2 photoreduction has been boosted by performing the reaction in an innovative photocatalytic reactor, which allows for operation up to 20 bar. A set of photocatalysts were used, including three types of pristine TiO2 [...] Read more.
In the current research, the productivity of CO2 photoreduction has been boosted by performing the reaction in an innovative photocatalytic reactor, which allows for operation up to 20 bar. A set of photocatalysts were used, including three types of pristine TiO2, i.e., one commercially prepared (Evonik P25), one home-prepared by flame spray pyrolysis (FSP), and one obtained by the hydrolysis of TiCl4 (TiO2exCl), a bare thermo-exfoliated carbon nitride (C3N4-TE), and binary materials composed of TiO2 and C3N4-TE. The photoreduction was carried out in water at pH 14 and in the presence of Na2SO3 as a hole scavenger. Hydrogen and very small amounts of CO were detected in the head space of the photoreactor, while in the liquid phase, the main product was formic acid, along with traces of methanol and formaldehyde. The composites P25/TE and TiO2exCl/TE were found to have a higher productivity if compared to its single constituents used alone, probably due to the heterojunction formed by coupling the two materials. Moreover, the high pressure applied in the photoreactor proved to be very effective in boosting the yield of the organic products. Full article
(This article belongs to the Special Issue Advances in Photocatalytic and Photothermal Catalytic CO2 Reduction)
Show Figures

Graphical abstract

4 pages, 704 KiB  
Proceeding Paper
Carbon Nitride-Based Catalysts for High Pressure CO2 Photoreduction
by Matteo Tommasi, Francesco Conte, Ilenia Rossetti and Gianguido Ramis
Mater. Proc. 2022, 11(1), 1; https://doi.org/10.3390/materproc2022011001 - 5 Dec 2022
Cited by 1 | Viewed by 1471
Abstract
In this work we focus on carbon nitride materials to improve the conversion and productivity of the photoreduction of CO2, developing a coupled strategy to optimize materials and operating conditions. The metal-free polymeric catalyst, graphitic carbon nitride (g-C3N4 [...] Read more.
In this work we focus on carbon nitride materials to improve the conversion and productivity of the photoreduction of CO2, developing a coupled strategy to optimize materials and operating conditions. The metal-free polymeric catalyst, graphitic carbon nitride (g-C3N4), is a relatively novel material, characterized by a wide absorbance in the visible region and demonstrating a superior performance compared to the commercial titania P25 benchmark, the most used photocatalyst for this application. We used an innovative photoreactor operating at high pressures of up to 20 bar, which is unprecedented in photocatalytic applications where transparent windows are needed. This enabled a boost in the solubility of CO2 in water when operating the reactor as a tri-phase liquid/gas/solid device and improved the surface adsorption over the catalyst. The best productivity for HCOOH so far achieved with these catalysts at 8 bar, pH = 14 and by using Na2SO3 as a hole scavenger was ca. 370 g/h kgcat. Such productivity is several orders of magnitude higher than the literature values. Full article
(This article belongs to the Proceedings of The 19th and 20th International Conference on Advanced Nanomaterials)
Show Figures

Figure 1

19 pages, 2871 KiB  
Article
Low Metal Loading (Au, Ag, Pt, Pd) Photo-Catalysts Supported on TiO2 for Renewable Processes
by Francesco Conte, Ilenia Rossetti, Gianguido Ramis, Cyril Vaulot, Samar Hajjar-Garreau and Simona Bennici
Materials 2022, 15(8), 2915; https://doi.org/10.3390/ma15082915 - 15 Apr 2022
Cited by 15 | Viewed by 3449
Abstract
Photo-catalysts based on titanium dioxide, and modified with highly dispersed metallic nanoparticles of Au, Ag, Pd and Pt, either mono- or bi-metallic, have been analyzed by multiple characterization techniques, including XRD, XPS, SEM, EDX, UV-Vis and N2 adsorption/desorption. Mono-metallic photo-catalysts were prepared [...] Read more.
Photo-catalysts based on titanium dioxide, and modified with highly dispersed metallic nanoparticles of Au, Ag, Pd and Pt, either mono- or bi-metallic, have been analyzed by multiple characterization techniques, including XRD, XPS, SEM, EDX, UV-Vis and N2 adsorption/desorption. Mono-metallic photo-catalysts were prepared by wet impregnation, while bi-metallic photocatalysts were obtained via deposition-precipitation (DP). The relationship between the physico-chemical properties and the catalyst’s behavior for various photo-synthetic processes, such as carbon dioxide photo-reduction to liquid products and glucose photo-reforming to hydrogen have been investigated. Among the tested materials, the catalysts containing platinum alone (i.e., 0.1 mol% Pt/TiO2) or bi-metallic gold-containing materials (e.g., 1 wt% (AuxAgy)/TiO2 and 1 wt% (AuxPtz)/TiO2) showed the highest activity, presenting the best results in terms of productivity and conversion for both applications. The textural, structural and morphological properties of the different samples being very similar, the main parameters to improve performance were function of the metal as electron sink, together with optoelectronic properties. The high activity in both applications was related to the low band gap, that allows harvesting more energy from a polychromatic light source with respect to the bare TiO2. Overall, high selectivity and productivity were achieved with respect to most literature data. Full article
(This article belongs to the Special Issue Feature Paper in Section Catalytic Materials)
Show Figures

Figure 1

16 pages, 3280 KiB  
Article
Photocatalytic Reduction of Nitrates and Combined Photodegradation with Ammonium
by Francesco Conte, Veronica Pellegatta, Alessandro Di Michele, Gianguido Ramis and Ilenia Rossetti
Catalysts 2022, 12(3), 321; https://doi.org/10.3390/catal12030321 - 11 Mar 2022
Cited by 3 | Viewed by 3777
Abstract
Bare titania and metal-promoted TiO2 catalysts were employed in the treatment of nitrates, which are ubiquitous pollutants of wastewater. The results show that the process can be carried out under visible light (from a white light LED lamp) and, in the best [...] Read more.
Bare titania and metal-promoted TiO2 catalysts were employed in the treatment of nitrates, which are ubiquitous pollutants of wastewater. The results show that the process can be carried out under visible light (from a white light LED lamp) and, in the best case, 23.5% conversion of nitrate was obtained over 4 h with full selectivity towards N2 by employing 0.1 mol% Ag/TiO2 prepared by flame spray pyrolysis. Moreover, the performance was worse when testing the same catalysts with tap water (11.3% conversion), due to the more complex composition of the matrix. Finally, it was found that photoreduction of nitrate can be effectively performed in combination with photo-oxidation of ammonium without loss in the activity, opening up the possibility of treating highly polluted wastewater with a single process. The latter treatment employs the two contaminants simultaneously as electron and holes scavengers, with very good selectivity, in a completely new process that we may call Photo-Selective Catalytic Reduction (Photo-SCR). Full article
(This article belongs to the Special Issue 10th Anniversary of Catalysts—Feature Papers in Photocatalysis)
Show Figures

Figure 1

17 pages, 2963 KiB  
Article
Photo-Oxidation of Ammonia to Molecular Nitrogen in Water under UV, Vis and Sunlight Irradiation
by Francesco Conte, Veronica Pellegatta, Antonio Tripodi, Gianguido Ramis and Ilenia Rossetti
Catalysts 2021, 11(8), 975; https://doi.org/10.3390/catal11080975 - 14 Aug 2021
Cited by 6 | Viewed by 3140
Abstract
Titanium dioxide-based photocatalysts have been used to perform the photo-oxidation of ammonium/ammonia to molecular nitrogen. Different light sources were employed, i.e., UV, LED visible light and natural sunlight, and their performance was compared in order to understand which setup was the most efficient. [...] Read more.
Titanium dioxide-based photocatalysts have been used to perform the photo-oxidation of ammonium/ammonia to molecular nitrogen. Different light sources were employed, i.e., UV, LED visible light and natural sunlight, and their performance was compared in order to understand which setup was the most efficient. It was found that under selected conditions, the LED lamp, in combination with silver-promoted TiO2, was able to push the conversion of ammonium toward 48% after 4 h of reaction time. On the other hand, with a more powerful UV lamp, lower conversion was achieved, ca. 40%. Natural sunlight under the same conditions attained more than 38% conversion, but the fluctuation of the reaction conditions remain a very critical issue for the real exploitation of sunlight in water treatment. Full article
Show Figures

Figure 1

14 pages, 909 KiB  
Article
Feasibility Study of the Solar-Promoted Photoreduction of CO2 to Liquid Fuels with Direct or Indirect Use of Renewable Energy Sources
by Francesco Conte, Antonio Tripodi, Ilenia Rossetti and Gianguido Ramis
Energies 2021, 14(10), 2804; https://doi.org/10.3390/en14102804 - 13 May 2021
Cited by 2 | Viewed by 2371
Abstract
Solar irradiation data collected at the latitude of Milan city, near the 45th parallel North, and original activity data of some high-performing photocatalysts (i.e., commercial TiO2 P25, TiO2 prepared by flame spray pyrolysis, 0.2% wt/wt Au/P25) have been used to evaluate [...] Read more.
Solar irradiation data collected at the latitude of Milan city, near the 45th parallel North, and original activity data of some high-performing photocatalysts (i.e., commercial TiO2 P25, TiO2 prepared by flame spray pyrolysis, 0.2% wt/wt Au/P25) have been used to evaluate the feasibility and the efficiency of an ideal solar photoreactor for the CO2 photoreduction in liquid phase. The best theoretical performance was achieved with commercial bare P25 titania, despite the fact that it was the material with the widest band gap (3.41 eV vs. 3.31 for FSP and 3.12 for Au/P25). In that case the efficiency of energy storage was calculated as about 2% (considering the total irradiated solar energy) and ca 18% (considering only the UV fraction of solar irradiance). Most of the energy content of the products was stored as formic acid, which would return a productivity of about 640 kg/year kgcat under daylight solar irradiation considering the variance of the irradiance data. Bare FSP titania gave a less promising result, while Au/P25 ranked in the middle. A comparison between the proposed setup and a photoreactor irradiated with UV lamps powered through a wind turbine or solar panels, which allow for an indirect use of renewable energy sources also intended for energy storage purposes, unveil that the latter is many times less efficient than the hypothesized direct solar photoreactor, despite the fact that it could be a reasonable storage system for energy production peaks. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

15 pages, 1868 KiB  
Article
Kinetic Modelling of Biodegradability Data of Commercial Polymers Obtained under Aerobic Composting Conditions
by Ilenia Rossetti, Francesco Conte and Gianguido Ramis
Eng 2021, 2(1), 54-68; https://doi.org/10.3390/eng2010005 - 20 Feb 2021
Cited by 24 | Viewed by 4607
Abstract
Methods to treat kinetic data for the biodegradation of different plastic materials are comparatively discussed. Different samples of commercial formulates were tested for aerobic biodegradation in compost, following the standard ISO14855. Starting from the raw data, the conversion vs. time entries were elaborated [...] Read more.
Methods to treat kinetic data for the biodegradation of different plastic materials are comparatively discussed. Different samples of commercial formulates were tested for aerobic biodegradation in compost, following the standard ISO14855. Starting from the raw data, the conversion vs. time entries were elaborated using relatively simple kinetic models, such as integrated kinetic equations of zero, first and second order, through the Wilkinson model, or using a Michaelis Menten approach, which was previously reported in the literature. The results were validated against the experimental data and allowed for computation of the time for half degradation of the substrate and, by extrapolation, estimation of the final biodegradation time for all the materials tested. In particular, the Michaelis Menten approach fails in describing all the reported kinetics as well the zeroth- and second-order kinetics. The biodegradation pattern of one sample was described in detail through a simple first-order kinetics. By contrast, other substrates followed a more complex pathway, with rapid partial degradation, subsequently slowing. Therefore, a more conservative kinetic interpolation was needed. The different possible patterns are discussed, with a guide to the application of the most suitable kinetic model. Full article
Show Figures

Figure 1

15 pages, 2741 KiB  
Article
Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts
by Elnaz Bahadori, Francesco Conte, Antonio Tripodi, Gianguido Ramis and Ilenia Rossetti
Catalysts 2021, 11(2), 209; https://doi.org/10.3390/catal11020209 - 5 Feb 2021
Cited by 13 | Viewed by 3501
Abstract
Photocatalysis has been used for the oxidation of ammonia/ammonium in water. A semibatch photoreactor was developed for this purpose, and nanostructured TiO2-based materials, either commercial P25 or prepared by flame spray pyrolysis (FSP), were used as catalysts. In the present work, [...] Read more.
Photocatalysis has been used for the oxidation of ammonia/ammonium in water. A semibatch photoreactor was developed for this purpose, and nanostructured TiO2-based materials, either commercial P25 or prepared by flame spray pyrolysis (FSP), were used as catalysts. In the present work, we investigated the effect of (i) metal co-catalysts, (ii) pH, and (iii) ammonia concentration on the efficiency of oxidation and on the selectivity to the undesired overoxidation byproduct, i.e., nitrites and nitrates. Several metals were added to both titania samples, and the physicochemical properties of every sample were studied by XRD, BET, and UV-Vis spectroscopy. The pH, which was investigated in the range of 2.5–11.5, was the most important parameter. The optimum pH values, resulted as 11.5 and 4.8 for P25 and FSP respectively, matching the best compromise between an acceptable conversion and a limited selectivity toward nitrite and nitrate formation. For both titania samples (P25 and FSP), ammonia conversion vs. nitrite and nitrate formation were highly dependent on the pH. At pH ≥ 9, the initial rate of photooxidation was high, with selective formation of overoxidized byproducts, whereas, at a more acidic pH, the conversion was lower, but the selectivity toward nitrogen formation was higher. P25 samples added with noble metal co-catalysts (0.1 mol% Ag, Au, Pd, Pt) at pH = 11.5 remarkably increased the selectivity to nitrite and nitrate, while, in the case of FSP samples (pH = 4.8), the co-catalysts increased the selectivity toward N2 with respect to the unpromoted catalyst and also the conversion in the case of Au and Pt. Reactivity was discussed, leading to the proposing of a mechanism that correlates the activity with either surface adsorption (depending of the surface charge of the catalyst and on pH) or the homogeneous reactivity of oxidizing species. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

19 pages, 3034 KiB  
Article
Flame Pyrolysis Synthesis of Mixed Oxides for Glycerol Steam Reforming
by Francesco Conte, Serena Esposito, Vladimiro Dal Santo, Alessandro Di Michele, Gianguido Ramis and Ilenia Rossetti
Materials 2021, 14(3), 652; https://doi.org/10.3390/ma14030652 - 31 Jan 2021
Cited by 5 | Viewed by 2154
Abstract
Flame spray pyrolysis was used to produce nanosized Ni-based catalysts starting from different mixed oxides. LaNiO3 and CeNiO3 were used as base materials and the formulation was varied by mixing them or incorporating variable amounts of ZrO2 or SrO during [...] Read more.
Flame spray pyrolysis was used to produce nanosized Ni-based catalysts starting from different mixed oxides. LaNiO3 and CeNiO3 were used as base materials and the formulation was varied by mixing them or incorporating variable amounts of ZrO2 or SrO during the synthesis. The catalysts were tested for the steam reforming of glycerol. One of the key problems for this application is the resistance to deactivation by sintering and coking, which may be increased by (1) improving Ni dispersion through the production of a Ni-La or Ni-Ce mixed oxide precursor, and then reduced; (2) using an oxide as ZrO2, which established a strong interaction with Ni and possesses high thermal resistance; (3) decreasing the surface acidity of ZrO2 through a basic promoter/support, such as La2O3; and (4) adding a promoter/support with very high oxygen mobility such as CeO2. A further key feature is the use of a high temperature synthesis, such as flame spray pyrolysis, to improve the overall thermal resistance of the oxides. These strategies proved effective to obtain active and stable catalysts at least for 20 h on stream with very limited coke formation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 2633 KiB  
Article
Rare Earths (La, Y, and Nd) Adsorption Behaviour towards Mineral Clays and Organoclays: Monoionic and Trionic Solutions
by Cinzia Cristiani, Maurizio Bellotto, Giovanni Dotelli, Saverio Latorrata, Gianguido Ramis, Paola Gallo Stampino, Elena Maria Iannicelli Zubiani and Elisabetta Finocchio
Minerals 2021, 11(1), 30; https://doi.org/10.3390/min11010030 - 29 Dec 2020
Cited by 16 | Viewed by 2978
Abstract
Metals from electric and electronic waste equipment (WEEE) can be recovered by dissolution with acids followed by liquid–liquid extraction. A possible alternative to liquid–liquid extraction is liquid–solid adsorption, where sorbents efficiency is the key factor for process efficiency. In this respect, aim of [...] Read more.
Metals from electric and electronic waste equipment (WEEE) can be recovered by dissolution with acids followed by liquid–liquid extraction. A possible alternative to liquid–liquid extraction is liquid–solid adsorption, where sorbents efficiency is the key factor for process efficiency. In this respect, aim of this paper is the study of the behaviour of two solid sorbents for the recovery of Rare Earths (REs)—in particular, La, Nd, and Y—from scraps of end-of-Life (EOL) electronic equipment. Two solid matrices were considered: a pristine montmorillonite clay and a modified-montmorillonite clay intercalated with a commercial pentaethylen-hexamine. The capture ability of the solids was tested towards single-ion La, Nd, and Y solutions and a multi-element solution containing the three ions. Before and after the uptake step, samples of both the solid and liquid phases were analysed. For both sorbents, at lower metal initial concentrations, the ions were captured in similar amount. At higher concentrations, pure clay showed a high total uptake towards La ions, likely due to surface interactions with clay sites. The organoclay preferentially interacts with Nd and Y. Considering the presence of the polyamine, this behaviour was related to ion coordination with the amino groups. The capture behaviour of the two sorbents was related to the different physicochemical properties of the ions, as well as to the ionic radius. Full article
Show Figures

Graphical abstract

16 pages, 2949 KiB  
Article
Reduced Graphene Oxide Membranes as Potential Self-Assembling Filter for Wastewater Treatment
by Saverio Latorrata, Cinzia Cristiani, Andrea Basso Peressut, Luigi Brambilla, Maurizio Bellotto, Giovanni Dotelli, Elisabetta Finocchio, Paola Gallo Stampino and Gianguido Ramis
Minerals 2021, 11(1), 15; https://doi.org/10.3390/min11010015 - 25 Dec 2020
Cited by 18 | Viewed by 5343
Abstract
This work focuses on the investigation of the capability of reduced graphene oxide (rGO) filters to remove metals from various wastewater. The process to produce rGO membranes is reported and discussed, as well as their ability to capture ions in complex solutions, such [...] Read more.
This work focuses on the investigation of the capability of reduced graphene oxide (rGO) filters to remove metals from various wastewater. The process to produce rGO membranes is reported and discussed, as well as their ability to capture ions in complex solutions, such as tap or industrial wastewater. Multi-ion solutions, containing Cu2+, Fe3+, Ni2+, and Mn2+ to simulate mine wastewater, or Ca2+ and Mg2+ to mimic drinkable water, were used as models. In mono-ionic solutions, the best capture efficiency values were proved for Ca2+, Fe3+, and Ni2+ ions, while a matrix effect was found for multi-ion solutions. However, interesting capture efficiencies were measured in the range of 30–90%, depending on the specific ion, for both single and multi-ion solutions. An attempt is proposed to correlate ions capture efficiency with ions characteristics, such as ionic radius or charge. Combining a satisfactory capture efficiency with low costs and ease of treatment unit operations, the approach here proposed is considered promising to replace other more complex and expensive filtration techniques. Full article
Show Figures

Figure 1

19 pages, 10729 KiB  
Article
Influence of the Degradation Medium on Water Uptake, Morphology, and Chemical Structure of Poly(Lactic Acid)-Sisal Bio-Composites
by Cristina Moliner, Elisabetta Finocchio, Elisabetta Arato, Gianguido Ramis and Alberto Lagazzo
Materials 2020, 13(18), 3974; https://doi.org/10.3390/ma13183974 - 8 Sep 2020
Cited by 29 | Viewed by 3141
Abstract
A series of poly(lactic acid) (PLA) and poly(lactic acid)-based bio-composites (sisal PLA) were prepared and studied by spectroscopic and microscopic techniques as such and after immersion at room temperature in different degradation mediums (i.e., distilled and natural sea water and solutions at pH [...] Read more.
A series of poly(lactic acid) (PLA) and poly(lactic acid)-based bio-composites (sisal PLA) were prepared and studied by spectroscopic and microscopic techniques as such and after immersion at room temperature in different degradation mediums (i.e., distilled and natural sea water and solutions at pH = 2, 6, and 8). In these conditions, some of their macroscopic and microscopic properties were monitored during a period of 30 days. Water absorption increased with the increasing fiber content regardless of the immersion medium. The maximum water absorption was achieved at pH = 8 (~16%), indicating a more severe action of the alkaline mediums on the samples. The diffusivity, D, of PLA decreased with the addition of fibers and acidic mediums showed higher D, indicating higher diffusivity of water through the specimens with respect to those submerged in moderate or alkaline mediums. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis evidenced a weak interaction between the PLA matrix and the sisal fibers. Very limited degradation phenomena occur in our conditions: Despite some changes in the microstructure, the PLA backbone seems to be largely resistant to hydrolysis, almost regardless of the pH value and even at the highest sisal content. Full article
Show Figures

Figure 1

Back to TopTop