Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Authors = Francesco Mocera ORCID = 0000-0003-2984-8155

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4724 KiB  
Proceeding Paper
Mechanical Multiscale Lithium-Ion Battery Modeling for Optimized Battery Pack Design
by Davide Clerici, Francesca Pistorio, Salvatore Scalzo, Salvatore Martelli, Francesco Mocera and Aurelio Somà
Eng. Proc. 2025, 85(1), 48; https://doi.org/10.3390/engproc2025085048 - 27 Mar 2025
Cited by 2 | Viewed by 715
Abstract
In the automotive and working vehicle industry, lithium-ion batteries are a strategic component affecting the design, cost, and performance of vehicles. The electrochemical processes which allow the battery to deliver or store electrical energy involve the interaction of lithium ions with the electrode [...] Read more.
In the automotive and working vehicle industry, lithium-ion batteries are a strategic component affecting the design, cost, and performance of vehicles. The electrochemical processes which allow the battery to deliver or store electrical energy involve the interaction of lithium ions with the electrode microstructure, causing the mechanical deformation of the electrode. The deformation of the electrode microstructure has two effects: mechanical degradation and the resulting overall performance decay of the battery, and macroscopic battery deformation. In this work, macroscopic battery deformation originating at the atomic scale is investigated with a multi-physics homogenized model in two steps: first, the composite electrode is modeled with a representative volume element; secondly, the battery is modeled by homogenizing the contribution of the hundreds of composite electrode layers. Then, the impact of the deformation of the single battery on the whole battery module is numerically investigated. The deformation of the single battery computed with the model is validated with experimental measurements quantifying the macroscopic battery deformation during operation. Then, different design solutions for the battery module are investigated to optimize its energetic and volumetric efficiency while maintaining safe levels of battery module deformation. Full article
Show Figures

Figure 1

17 pages, 8549 KiB  
Proceeding Paper
Experimental Analysis of an Autonomous Driving Strategy for a Four-Wheel Differential Drive Agricultural Rover
by Salvatore Martelli and Francesco Mocera
Eng. Proc. 2025, 85(1), 41; https://doi.org/10.3390/engproc2025085041 - 21 Mar 2025
Cited by 1 | Viewed by 406
Abstract
Currently, the entire agricultural sector is under significant pressure. The causes that may explain this are different, such as climate change, market instability, and the decline in the population of agricultural workers. As a result, the agricultural tractor and machinery field is at [...] Read more.
Currently, the entire agricultural sector is under significant pressure. The causes that may explain this are different, such as climate change, market instability, and the decline in the population of agricultural workers. As a result, the agricultural tractor and machinery field is at the center of an intense technological revolution. One of the possible solutions to the aforementioned problems can be represented by agricultural vehicles equipped with autonomous driving systems. The key pillar of an autonomous driven vehicle is its autonomous driving algorithm which represents the link between the information coming from the vehicle’s sensor systems and the success of the vehicle’s operative mission. In this paper, an experimental assessment of the motion strategy for a four-wheel differential drive agricultural rover was conducted. This work is structured in three parts. First, the description of the working principles of the autonomous driving algorithm is proposed. Then, the case study and the scaled prototype designed for this purpose are described. In the end, the result obtained by the virtual model, which acts as reference case, is compared with the results that came out of the field test campaign. The outcomes show the overlap between the virtual and real results. Full article
Show Figures

Figure 1

29 pages, 4325 KiB  
Article
Life Cycle Assessment Comparison of Orchard Tractors Powered by Diesel and Hydrogen Fuel Cell
by Salvatore Martelli, Valerio Martini, Francesco Mocera and Aurelio Soma’
Energies 2024, 17(18), 4599; https://doi.org/10.3390/en17184599 - 13 Sep 2024
Cited by 3 | Viewed by 2976
Abstract
To reduce the impact of the agricultural sector on the environment, human health and resource depletion, several steps should be taken to develop innovative powertrain systems. The agricultural sector must be involved in this innovation, since diesel-powered tractors are an important source in [...] Read more.
To reduce the impact of the agricultural sector on the environment, human health and resource depletion, several steps should be taken to develop innovative powertrain systems. The agricultural sector must be involved in this innovation, since diesel-powered tractors are an important source in terms of pollution. In this context, fuel-cell systems have gained importance, making them one of the possible substitutes due to their characteristics featuring almost zero local emissions, low refueling time and high efficiency. However, to effectively assess the sustainability of a fuel-cell tractor, a cradle-to-grave life cycle assessment, comprising production, use phase and end of life, must be performed. This article presents a comparative analysis, according to different impact categories, of the life cycle impacts of a traditional diesel-powered tractor and a fuel-cell hybrid tractor, designed considering operative requirements and functional constraints. The study was conducted according to the LCA technique (defined by ISO 14040 and ISO 14044 standards), combining secondary data, mainly derived from studies and reports available in the literature, with the use of the Ecoinvent 3.0 database. The results are presented according to ten different impact categories defined by ReCiPe 2016 v 1.03 at the midpoint level. The findings obtained showed that the fuel-cell tractor allows for a relevant reduction in all the considered categories. The highest-impact reduction, more than 92%, was obtained in the human toxicity non-carcinogenic category, while the lowest reduction, around 4.55%, was observed for the fossil fuel scarcity category, mainly due to the adoption of gray hydrogen which is produced from fossil fuels. As for the climate change category, the fuel-cell tractor showed a reduction of more than 34% in the life cycle impact. Finally, the authors also considered the case of green hydrogen produced using solar energy. In this case, further reductions in the impact on climate change and fossil fuel resource depletion were obtained. However, for the other impact categories, the results were worse compared to using gray hydrogen. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

22 pages, 7390 KiB  
Article
Autonomous Driving Strategy for a Specialized Four-Wheel Differential-Drive Agricultural Rover
by Salvatore Martelli, Francesco Mocera and Aurelio Somà
AgriEngineering 2024, 6(3), 1937-1958; https://doi.org/10.3390/agriengineering6030113 - 21 Jun 2024
Cited by 2 | Viewed by 2776
Abstract
Recently, the agriconstruction machinery sector has been involved in a great technological revolution. The reasons that may explain this are strictly connected to the mitigation of climate change. At the same time, there is a necessity to ensure an adequate production level in [...] Read more.
Recently, the agriconstruction machinery sector has been involved in a great technological revolution. The reasons that may explain this are strictly connected to the mitigation of climate change. At the same time, there is a necessity to ensure an adequate production level in order to meet the increasing food demand due to the current population growth trend. In this context, the development of autonomously driven agricultural vehicles is one of the areas on which tractor manufacturers and academics are focusing. The fundamental prerequisite for an autonomous driving vehicle is the development of an appropriate motion strategy. Hence, the vehicle will be able to follow predetermined routes, accomplishing its missions. The aim of this study was the development of path-planning and path-following algorithms for an agricultural four-whee differential-drive vehicle operating in vineyard/orchard environments. The algorithms were completely developed within the MATLAB software environment. After a brief description of the geometrical characteristics of the vehicle, a parametric process to build a virtual orchard environment is proposed. Then, the functional principles of the autonomous driving algorithms are shown. Finally, the algorithms are tested, varying their main tuning parameters, and an indicator to quantify the algorithms’ efficiency, named relative accuracy, is defined. The results obtained show the strong dependence between the relative accuracy and lookahead distance value assigned to the rover. Furthermore, an analysis of rover positioning errors was performed. The results in this case show a lower influence of the location error when the accuracy of the positioning device is within 2 cm. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

5 pages, 158 KiB  
Editorial
Material Modeling in Multiphysics Simulation
by Francesco De Bona, Francesco Mocera and Jelena Srnec Novak
Metals 2024, 14(3), 296; https://doi.org/10.3390/met14030296 - 1 Mar 2024
Cited by 1 | Viewed by 1631
Abstract
Virtual prototyping techniques, generally based on numerical methods, are widely used in the process of designing an industrial product [...] Full article
(This article belongs to the Special Issue Material Modeling in Multiphysics Simulation)
20 pages, 1129 KiB  
Article
Carbon Footprint Enhancement of an Agricultural Telehandler through the Application of a Fuel Cell Powertrain
by Valerio Martini, Francesco Mocera and Aurelio Somà
World Electr. Veh. J. 2024, 15(3), 91; https://doi.org/10.3390/wevj15030091 - 1 Mar 2024
Cited by 4 | Viewed by 2181
Abstract
The growing awareness about climate change and environmental pollution is pushing the industrial and academic world to investigate more sustainable solutions to reduce the impact of anthropic activities. As a consequence, a process of electrification is involving all kind of vehicles with a [...] Read more.
The growing awareness about climate change and environmental pollution is pushing the industrial and academic world to investigate more sustainable solutions to reduce the impact of anthropic activities. As a consequence, a process of electrification is involving all kind of vehicles with a view to gradually substitute traditional powertrains that emit several pollutants in the exhaust due to the combustion process. In this context, fuel cell powertrains are a more promising strategy, with respect to battery electric alternatives where productivity and endurance are crucial. It is important to replace internal combustion engines in those vehicles, such as the those in the sector of Non-Road Mobile Machinery. In the present paper, a preliminary analysis of a fuel cell powertrain for a telehandler is proposed. The analysis focused on performance, fuel economy, durability, applicability and environmental impact of the vehicle. Numerical models were built in MATLAB/Simulink and a simple power follower strategy was developed with the aim of reducing components degradation and to guarantee a charge sustaining operation. Simulations were carried out regarding both peak power conditions and a typical real work scenario. The simulations’ results showed that the fuel cell powertrain was able to achieve almost the same performances without excessive stress on its components. Indeed, a degradation analysis was conducted, showing that the fuel cell system can achieve satisfactory durability. Moreover, a Well-to-Wheel approach was adopted to evaluate the benefits, in terms of greenhouse gases, of adopting the fuel cell system. The results of the analysis demonstrated that, even if considering grey hydrogen to feed the fuel cell system, the proposed powertrain can reduce the equivalent CO2 emissions of 69%. This reduction can be further enhanced using hydrogen from cleaner production processes. The proposed preliminary analysis demonstrated that fuel cell powertrains can be a feasible solution to substitute traditional systems on off-road vehicles, even if a higher investment cost might be required. Full article
(This article belongs to the Special Issue New Energy Special Vehicle, Tractor and Agricultural Machinery)
Show Figures

Figure 1

36 pages, 1185 KiB  
Review
Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications
by Francesco Mocera, Aurelio Somà, Salvatore Martelli and Valerio Martini
Energies 2023, 16(18), 6601; https://doi.org/10.3390/en16186601 - 13 Sep 2023
Cited by 34 | Viewed by 6879
Abstract
The worldwide growing demand for food is pushing the agricultural field towards new innovative solutions to increase the efficiency and productivity of cultivations. In this direction, agricultural mechanization plays a crucial role, and tractors are among the most important actors. Agricultural tractors are [...] Read more.
The worldwide growing demand for food is pushing the agricultural field towards new innovative solutions to increase the efficiency and productivity of cultivations. In this direction, agricultural mechanization plays a crucial role, and tractors are among the most important actors. Agricultural tractors are machines designed to push/pull special instruments usually referred to as implements, to which they may transfer power by means of a mechanical power take-off (PTO) or via hydraulic connections, thanks to the availability of pressurized oil. The tractor can be seen as a mobile power station: the more efficiently it provides power to external implements or to the ground in terms of tractive effort, the higher will be the efficiency and productivity of a certain task. However, the growing demand for greener and sustainable work machines is pushing towards new concepts of tractor powertrains with the goal of reducing, as much as possible, the amount of pollutants and GHG emissions per unit of work. In this paper, the authors will propose a review of the current trends towards electrification of agricultural tractors. Electrification can help in making vehicles more efficient and opening a new scenario for work optimization. Moreover, electrification is also involving the implements attached to the tractor and responsible for actually performing a wide variety of field tasks. However, tractor electrification requires proper attention due to the impact of high power electric systems on the vehicle configuration. For this reason, a proper level of hybridization should be considered. In this paper, a new classification method will be proposed, considering the electrification level in terms of power and as a function of the installed electric energy storage. This definition will be applied to classify the current state of the art of electric and hybrid agricultural tractors, investigating current trends in the scientific community and among industrial manufacturers with a look to the new upcoming technologies. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

24 pages, 19377 KiB  
Article
Design and Experimental Validation of a Scaled Test Bench for the Emulation of a Hybrid Fuel Cell Powertrain for Agricultural Tractors
by Valerio Martini, Francesco Mocera and Aurelio Somà
Appl. Sci. 2023, 13(15), 8582; https://doi.org/10.3390/app13158582 - 25 Jul 2023
Cited by 5 | Viewed by 2473
Abstract
Hybrid fuel cell powertrains are a promising strategy to reduce the environmental impact of vehicles and non-road mobile machinery. To preserve the state-of-health of fuel cells, an energy storage system with sufficient power capacity, such as ultra-capacitors or batteries, should be introduced in [...] Read more.
Hybrid fuel cell powertrains are a promising strategy to reduce the environmental impact of vehicles and non-road mobile machinery. To preserve the state-of-health of fuel cells, an energy storage system with sufficient power capacity, such as ultra-capacitors or batteries, should be introduced in the system to help the fuel cell during sudden and abrupt changes in power demands. However, the presence of two or more energy sources necessitates the development of an energy management strategy. The energy management strategy should properly split the power request between the different energy sources. In this paper, the design and the experimental validation of a scaled test bench for the emulation of a fuel cell/battery powertrain for a vehicular application is presented. The fuel cell is emulated through an analogically controlled DC power source that reproduces its real voltage–current curve. To split the power between the emulated fuel cell and the batteries, controlled DC-DC is used and a simple energy management strategy based on a proportional-integral controller is developed. The external load is reproduced using a load unit composed of a programmable electronic load and a power supply. Experimental tests are performed to evaluate the system behaviour and to characterize its main components. The experimental results show that the system successfully emulates the powertrain in accordance with the proposed energy management strategy. Full article
(This article belongs to the Special Issue Novel Developments in Agricultural Machinery and Technology)
Show Figures

Figure 1

22 pages, 4132 KiB  
Article
Carbon Footprint of an Orchard Tractor through a Life-Cycle Assessment Approach
by Salvatore Martelli, Francesco Mocera and Aurelio Somà
Agriculture 2023, 13(6), 1210; https://doi.org/10.3390/agriculture13061210 - 7 Jun 2023
Cited by 14 | Viewed by 6144
Abstract
The effects of climate change are reaching a point of no return. The necessity to reduce greenhouse gasses (GHGs) is currently notorious on several levels: academic, industrial, and political. The Paris Climate Agreement set a clear roadmap to limit pollutant emissions and reach [...] Read more.
The effects of climate change are reaching a point of no return. The necessity to reduce greenhouse gasses (GHGs) is currently notorious on several levels: academic, industrial, and political. The Paris Climate Agreement set a clear roadmap to limit pollutant emissions and reach carbon neutrality. Consequently, everything related to product life cycles, considering the entire supply chain, needs to be analyzed and reconsidered. The agricultural sector is no exception: indeed, it is responsible for 11% of global anthropogenic GHG emissions. Agri-construction sector accounts for 20–30% of all GHG emissions referred to the agricultural field. This study aimed to evaluate the GHG emissions of an orchard-specialized tractor operating in Europe considering a service life of ten years. The assessment was conducted through the life-cycle assessment (LCA) standardized methodology, combining secondary data, primary data, and a software database (Open LCA (v 1.10.3) software, Environmental Footprint (v 4) database). First, the functional unit, and the boundaries of the analysis are defined. Then, the tractor life cycle is analyzed considering its three main stages: manufacture, use, and disposal. Lastly, the results are discussed according to gate-to-gate and cradle-to-gate approaches. What emerged from the assessment was the production of 5.75 kg CO2eq. · kgvehicle−1 · year−1 for a single orchard specialized tractor and the predominance of use phase emissions (around 90% of the total). Full article
Show Figures

Figure 1

47 pages, 77801 KiB  
Review
Review on the Experimental Characterization of Fracture in Active Material for Lithium-Ion Batteries
by Francesca Pistorio, Davide Clerici, Francesco Mocera and Aurelio Somà
Energies 2022, 15(23), 9168; https://doi.org/10.3390/en15239168 - 2 Dec 2022
Cited by 24 | Viewed by 4711
Abstract
Nowadays, lithium-ion batteries are one of the most widespread energy storage systems, being extensively employed in a large variety of applications. A significant effort has been made to develop advanced materials and manufacturing processes with the aim of increasing batteries performance and preserving [...] Read more.
Nowadays, lithium-ion batteries are one of the most widespread energy storage systems, being extensively employed in a large variety of applications. A significant effort has been made to develop advanced materials and manufacturing processes with the aim of increasing batteries performance and preserving nominal properties with cycling. Nevertheless, mechanical degradation is still a significant damaging mechanism and the main cause of capacity fade and power loss. Lithium ions are inserted and extracted into the lattice structure of active materials during battery operation, causing the deformation of the crystalline lattice itself. Strain mismatches within the different areas of the active material caused by the inhomogeneous lithium-ions concentration induce mechanical stresses, leading ultimately to fracture, fatigue issues, and performance decay. Therefore, a deep understanding of the fracture mechanics in active materials is needed to meet the rapidly growing demand for next-generation batteries with long-term stability, high safety, excellent performance, and long life cycle. This review aims to analyze the fracture mechanics in the active material microstructure of electrodes due to battery operations from an experimental point of view. The main fracture mechanisms occurring in the common cathode and anode active materials are described, as well as the factors triggering and enhancing fracture. At first, the results obtained by performing microscopy and diffraction analysis in different materials are discussed to provides visual evidence of cracks and their relation with lattice structure. Then, fatigue phenomena due to crack growth as a function of the number of cycles are evaluated to assess the evolution of damage during the life cycle, and the effects of fracture on the battery performance are described. Finally, the literature gaps in the characterization of the fracture behavior of electrode active materials are highlighted to enhance the development of next-generation lithium-ion batteries. Full article
(This article belongs to the Special Issue Advanced and Multifunctional Materials for Energy Storage Systems)
Show Figures

Figure 1

19 pages, 27317 KiB  
Article
Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor
by Valerio Martini, Francesco Mocera and Aurelio Somà
Energies 2022, 15(23), 8818; https://doi.org/10.3390/en15238818 - 22 Nov 2022
Cited by 20 | Viewed by 3220
Abstract
In recent years, growing awareness about environmental issues is pushing humankind to explore innovative technologies to reduce the anthropogenic sources of pollutants. Among these sources, internal combustion engines in non-road mobile machinery (NRMM), such as agricultural tractors, are one of the most important. [...] Read more.
In recent years, growing awareness about environmental issues is pushing humankind to explore innovative technologies to reduce the anthropogenic sources of pollutants. Among these sources, internal combustion engines in non-road mobile machinery (NRMM), such as agricultural tractors, are one of the most important. The aim of this work is to explore the possibility of replacing the conventional diesel engine with an electric powertrain powered by a hybrid storage system, consisting of a small battery pack and a fuel-cell system. The battery pack (BP) is necessary to help the fuel cell manage sudden peaks in power demands. Numerical models of the conventional powertrain and a fuel-cell tractor were carried out. To compare the two powertrains, work cycles derived from data collected during real operative conditions were exploited and simulated. For the fuel-cell tractor, a control strategy to split the electric power between the battery pack and the fuel cell was explored. The powertrains were compared in terms of greenhouse gas emissions (GHG) according to well-to-wheel (WTW) equivalent CO2 emission factors available in the literature. Considering the actual state-of-the-art hydrogen production methods, the simulation results showed that the fuel-cell/battery powertrain was able to accomplish the tasks with a reduction of about 50% of the equivalent CO2 emissions compared to traditional diesel-powered vehicles. Full article
Show Figures

Figure 1

22 pages, 883 KiB  
Article
Comparative Analysis of Hybrid Electric Architectures for Specialized Agricultural Tractors
by Francesco Mocera, Valerio Martini and Aurelio Somà
Energies 2022, 15(5), 1944; https://doi.org/10.3390/en15051944 - 7 Mar 2022
Cited by 38 | Viewed by 4492
Abstract
In this work, a comparative numerical analysis between the performance of a conventional specialized orchard tractor and those of three different hybrid electric tractor configurations is presented. The aim was to compare several powertrain configurations in the same working scenarios derived from field [...] Read more.
In this work, a comparative numerical analysis between the performance of a conventional specialized orchard tractor and those of three different hybrid electric tractor configurations is presented. The aim was to compare several powertrain configurations in the same working scenarios derived from field measurements. Peak power capabilities and endurance were numerically tested with specific load scenarios involving both transportation mission profiles and field activities with external implements powered through the power take off of the tractor. The proposed hybrid architectures were configured with the same battery-based energy storage system to perform the comparison with the same energy storage capabilities. Two parallel, two series and one electro-hydraulic hybrid configuration were modeled and tested through simulations. The parallel ones excelled in peak power performance, whereas the series configurations had the highest fuel savings. The electro-hydraulic configuration was proposed as an alternative able to allow for a downsized engine but also for the introduction of the Continuously Variable Transmission (CVT) functionality, which is always an interesting feature for such working machines. Full article
(This article belongs to the Special Issue Frontiers in Hybrid Vehicles)
Show Figures

Figure 1

19 pages, 945 KiB  
Article
Numerical Performance Investigation of a Hybrid eCVT Specialized Agricultural Tractor
by Francesco Mocera and Valerio Martini
Appl. Sci. 2022, 12(5), 2438; https://doi.org/10.3390/app12052438 - 25 Feb 2022
Cited by 25 | Viewed by 3845
Abstract
The need for highly efficient agricultural machineries is increasing the interest of the research community and of industrial manufacturers towards the use of integrated electric systems in combination with traditional powertrain elements. In this work, a hybrid electric tractor with electric continuously variable [...] Read more.
The need for highly efficient agricultural machineries is increasing the interest of the research community and of industrial manufacturers towards the use of integrated electric systems in combination with traditional powertrain elements. In this work, a hybrid electric tractor with electric continuously variable transmission (eCVT) capabilities was studied to investigate their performance in comparison with that of traditional diesel-powered tractor designs. This hybrid electric configuration can be classified as a power-split architecture that aims to combine the best characteristics of both the simpler parallel and the series hybrid layout while minimizing their main drawbacks. An eCVT configuration can allow for optimizing the diesel operating point with respect to the current working conditions, and achieving peak power performance and energy saving with relatively small electric machines. The proposed hybrid eCVT (HeCVT) tractor architecture was studied using a numerical model that allowed for developing two different control strategies: a charge depleting mode enabling the driver to use full power for the most power-intensive scenarios and a charge sustaining mode developed to optimize efficiency and battery use along an entire work day. To test the proposed architecture, several tasks derived from experimental field measurements on a specialized agricultural tractor were used. HeCVT results were compared with a numerical model of the traditional tractor validated by these experimental data. The HeCVT tractor showed good performance in terms of peak power capabilities using a downsized diesel engine, and consistent fuel savings were obtained according to typical daily working scenarios. Full article
(This article belongs to the Special Issue Frontiers in Hybrid Vehicles Powertrain)
Show Figures

Figure 1

17 pages, 1652 KiB  
Article
Experimental Characterization of Lithium-Ion Cell Strain Using Laser Sensors
by Davide Clerici, Francesco Mocera and Aurelio Somà
Energies 2021, 14(19), 6281; https://doi.org/10.3390/en14196281 - 2 Oct 2021
Cited by 32 | Viewed by 4313
Abstract
The characterization of thickness change during operation of LFP/Graphite prismatic batteries is presented in this work. In this regard, current rate dependence, hysteresis behaviour between charge and discharge and correlation with phase changes are deepened. Experimental tests are carried out with a battery [...] Read more.
The characterization of thickness change during operation of LFP/Graphite prismatic batteries is presented in this work. In this regard, current rate dependence, hysteresis behaviour between charge and discharge and correlation with phase changes are deepened. Experimental tests are carried out with a battery testing equipment correlated with optical laser sensors to evaluate swelling. Furthermore, thickness change is computed analytically with a mathematical model based on lattice parameters of the crystal structures of active materials. The results of the model are validated with experimental data. Thickness change is able to capture variations of the internal structure of the battery, referred to as phase change, characteristic of a certain state of charge. Furthermore, phase change shift is a characteristic of battery ageing. Being able to capture these properties with sensors mounted on the external surface the cell is a key feature for improving state of charge and state of health estimation in battery management system. Full article
(This article belongs to the Special Issue Performance Test and Thermo-Mechanical Modeling of Lithium Batteries)
Show Figures

Graphical abstract

18 pages, 2699 KiB  
Article
Shape Influence of Active Material Micro-Structure on Diffusion and Contact Stress in Lithium-Ion Batteries
by Davide Clerici, Francesco Mocera and Aurelio Somà
Energies 2021, 14(1), 134; https://doi.org/10.3390/en14010134 - 29 Dec 2020
Cited by 20 | Viewed by 3748
Abstract
Electrochemical-mechanical modelling is a key issue to estimate the damage of active material, as direct measurements cannot be performed due to the particles nanoscale. The aim of this paper is to overcome the common assumptions of spherical and standalone particle, proposing a general [...] Read more.
Electrochemical-mechanical modelling is a key issue to estimate the damage of active material, as direct measurements cannot be performed due to the particles nanoscale. The aim of this paper is to overcome the common assumptions of spherical and standalone particle, proposing a general approach that considers a parametrized particle shape and studying its influence on the mechanical stresses which arise in active material particles during battery operation. The shape considered is a set of ellipsoids with variable aspect ratio (elongation), which aims to approximate real active material particles. Active material particle is divided in two domains: non-contact domain and contact domain, whether contact with neighbouring particles affects stress distribution or not. Non-contact areas are affected by diffusion stress, caused by lithium concentration gradient inside particles. Contact areas are affected simultaneously by diffusion stress and contact stress, caused by contact with neighbouring particles as a result of particle expansion due to lithium insertion. A finite element model is developed in Ansys™APDL to perform the multi-physics computation in non-spherical domain. The finite element model is validated in the spherical case by analytical models of diffusion and contact available for simple geometry. Then, the shape factor is derived to describe how particle shape affects mechanical stress in non-contact and contact domains. Full article
(This article belongs to the Special Issue Performance Test and Thermo-Mechanical Modeling of Lithium Batteries)
Show Figures

Graphical abstract

Back to TopTop