Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Authors = Fazlurrahman Khan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 6467 KiB  
Review
Marine Bacteriophages as Next-Generation Therapeutics: Insights into Antimicrobial Potential and Application
by Riza Jane S. Banicod, Aqib Javaid, Nazia Tabassum, Du-Min Jo, Md. Imtaiyaz Hassan, Young-Mog Kim and Fazlurrahman Khan
Viruses 2025, 17(7), 971; https://doi.org/10.3390/v17070971 - 10 Jul 2025
Viewed by 749
Abstract
Microbial infections are an escalating global health threat, driven by the alarming rise of antimicrobial resistance (AMR), which has made many conventional antibiotics increasingly ineffective and threatens to reverse decades of medical progress. The rapid emergence and spread of multidrug-resistant bacteria have severely [...] Read more.
Microbial infections are an escalating global health threat, driven by the alarming rise of antimicrobial resistance (AMR), which has made many conventional antibiotics increasingly ineffective and threatens to reverse decades of medical progress. The rapid emergence and spread of multidrug-resistant bacteria have severely limited treatment options, resulting in increased morbidity, mortality, and healthcare burden worldwide. In response to these challenges, phage therapy is regaining interest as a promising alternative. Bacteriophages, the most abundant biological entities, have remarkable specificity toward their bacterial hosts, enabling them to selectively eliminate pathogenic strains. Phage therapy presents several advantages over conventional antibiotics, which include minimal disruption to the microbiome and a slower rate of resistance development. Among the various sources of phages, the marine environment remains one of the least explored. Given their adaptation to saline conditions, high pressure, and variable nutrient levels, marine bacteriophages mostly exhibit enhanced environmental stability, broader host ranges, and distinct infection mechanisms, thus making them highly promising for therapeutic purposes. This review explores the growing therapeutic potential of marine bacteriophages by examining their ecological diversity, biological characteristics, infection dynamics, and practical applications in microbial disease control. It also deals with emerging strategies such as phage–antibiotic synergy, genetic engineering, and the use of phage-derived enzymes, alongside several challenges that must be addressed to enable clinical translation and regulatory approval. Advancing our understanding and application of marine phages presents a promising path in the global fight against AMR and the development of next-generation antimicrobial therapies. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

15 pages, 2149 KiB  
Article
Biofilm-Forming Lactic Acid Bacteria in Sausages: Isolation, Characterization, and Inhibition Using Eisenia bicyclis-Based Nanoparticles
by Do Kyung Oh, Du-Min Jo, Minji Kim, Jeong-Bin Jo, Ji-Hwan Choi, Jeong Mi Choi, Geum-Jae Jeong, Se Yun Jeong, Fazlurrahman Khan and Young-Mog Kim
Antibiotics 2025, 14(7), 637; https://doi.org/10.3390/antibiotics14070637 - 22 Jun 2025
Viewed by 490
Abstract
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to [...] Read more.
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to identify and characterize LAB strains from sausage products that are capable of biofilm formation, and to evaluate the inhibitory effects of E. bicyclis methanol extract, its ethyl acetate fraction, and phloroglucinol, as well as to synthesize AuNPs, and assess their efficacy in controlling biofilm formation. Methods: Slime or biofilm-producing LAB bacteria were isolated from commercial sausages and identified using 16S rRNA gene sequencing. Lactobacillus sakei S10, which can tolerate high salt concentrations and cold temperatures, was chosen as a representative strain. The isolates were subsequently tested for hemolytic activity, salt and temperature tolerance, and carbohydrate consumption patterns. To evaluate antibiofilm potential, marine-derived compounds from Eisenia bicyclis, such as phloroglucinol (PG), crude methanolic extracts, ethyl acetate fractions, and gold nanoparticle (AuNP) formulations, were tested in situ on sausage surfaces against L. sakei S10 and common pathogens (Pseudomonas aeruginosa and Staphylococcus aureus). The biofilm-inhibitory effects of the extracts, PG, and PG-AuNPs were estimated using the colony-counting method. Results: The PG-AuNPs had an average particle size of 98.74 nm and a zeta potential of −29.82 mV, indicating nanoscale dimensions and considerable colloidal stability. Structural analysis confirmed their spherical form and crystalline structure, as well as the presence of phenolic groups in both reduction and stabilization processes. Among the studied treatments, the PG and PG-AuNPs had the strongest antibiofilm activities, dramatically lowering biofilm biomass, particularly for P. aeruginosa and L. sakei S10. However, the inhibitory effects were less prominent in in situ conditions than in in vitro testing, highlighting the complexity of real food matrices. Conclusions: The results of this study indicate that polyphenolic compounds obtained from marine sources, particularly in nano-formulated forms, have a great deal of potential as natural antibiofilm products. Enhancing the microbiological safety of processed meat products and extending their shelf life could be accomplished through the application of these polyphenolic compounds in food packaging or surface treatments. Full article
(This article belongs to the Section Antibiofilm Strategies)
Show Figures

Figure 1

52 pages, 8144 KiB  
Review
Multiple Strategies for the Application of Medicinal Plant-Derived Bioactive Compounds in Controlling Microbial Biofilm and Virulence Properties
by Mulugeta Mulat, Riza Jane S. Banicod, Nazia Tabassum, Aqib Javaid, Abirami Karthikeyan, Geum-Jae Jeong, Young-Mog Kim, Won-Kyo Jung and Fazlurrahman Khan
Antibiotics 2025, 14(6), 555; https://doi.org/10.3390/antibiotics14060555 - 29 May 2025
Cited by 2 | Viewed by 963
Abstract
Biofilms are complex microbial communities encased within a self-produced extracellular matrix, which plays a critical role in chronic infections and antimicrobial resistance. These enhance pathogen survival and virulence by protecting against host immune defenses and conventional antimicrobial treatments, posing substantial challenges in clinical [...] Read more.
Biofilms are complex microbial communities encased within a self-produced extracellular matrix, which plays a critical role in chronic infections and antimicrobial resistance. These enhance pathogen survival and virulence by protecting against host immune defenses and conventional antimicrobial treatments, posing substantial challenges in clinical contexts such as device-associated infections and chronic wounds. Secondary metabolites derived from medicinal plants, such as alkaloids, tannins, flavonoids, phenolic acids, and essential oils, have gained attention as promising agents against biofilm formation, microbial virulence, and antibiotic resistance. These natural compounds not only limit microbial growth and biofilm development but also disrupt communication between bacteria, known as quorum sensing, which reduces their ability to cause disease. Through progress in nanotechnology, various nanocarriers such as lipid-based systems, polymeric nanoparticles, and metal nanoparticles have been developed to improve the solubility, stability, and cellular uptake of phytochemicals. In addition, the synergistic use of plant-based metabolites with conventional antibiotics or antifungal drugs has shown promise in tackling drug-resistant microorganisms and revitalizing existing drugs. This review comprehensively discusses the efficacy of pure secondary metabolites from medicinal plants, both as individuals and in nanoformulated forms or in combination with antimicrobial agents, as alternative strategies to control biofilm-forming pathogens. The molecular mechanisms underlying their antibiofilm and antivirulence activities are discussed in detail. Lastly, the current pitfalls, limitations, and emerging directions in translating these natural compounds into clinical applications are critically evaluated. Full article
Show Figures

Figure 1

43 pages, 6701 KiB  
Review
Alleviation of Neurological Disorders by Targeting Neurodegenerative-Associated Enzymes: Natural and Synthetic Molecules
by Alka Ashok Singh, Fazlurrahman Khan and Minseok Song
Int. J. Mol. Sci. 2025, 26(10), 4707; https://doi.org/10.3390/ijms26104707 - 14 May 2025
Viewed by 1299
Abstract
Neurological disorders, encompassing neurodegenerative and neuroinflammatory conditions, present significant public health and clinical challenges. Recent research has elucidated the pivotal role of various enzymes in the onset and progression of these disorders. This review explores the therapeutic potential of targeting these enzymes with [...] Read more.
Neurological disorders, encompassing neurodegenerative and neuroinflammatory conditions, present significant public health and clinical challenges. Recent research has elucidated the pivotal role of various enzymes in the onset and progression of these disorders. This review explores the therapeutic potential of targeting these enzymes with natural and synthetic molecules. Key enzymes, including acetylcholinesterase, monoamine oxidase, beta-secretase, tau kinases, caspases, and cyclooxygenase-2, are implicated in diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Modulating these enzymes can alleviate symptoms, slow disease progression, or reverse pathological changes. Natural molecules derived from plants, microbes, seaweeds, and animals have long been noted for their therapeutic potential. Their ability to interact with specific enzymes with high specificity and minimal side effects makes them promising candidates for treatment. These natural agents provide a foundation for developing targeted therapies with improved safety profiles. Simultaneously, the development of synthetic chemistry has resulted in molecules designed to inhibit neurodegenerative enzymes with precision. This review examines the progress in creating small molecules, peptides, and enzyme inhibitors through sophisticated drug design techniques. It evaluates the efficacy, safety, and mechanisms of these synthetic agents, highlighting their potential for clinical application. The review offers a comprehensive overview of recent advancements in enzyme-targeted therapies for neurological disorders, covering both natural and synthetic molecules investigated in preclinical and clinical settings. It discusses the mechanisms through which these molecules exert their effects, the challenges faced in their development, and future research directions. By synthesizing current knowledge, this paper aims to illuminate the potential of enzyme-targeted interventions in managing neurological disorders, showcasing both the promise and limitations of these approaches. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

23 pages, 6538 KiB  
Review
Biofilm-Associated Amyloid Proteins Linked with the Progression of Neurodegenerative Diseases
by Alka Ashok Singh, Fazlurrahman Khan and Minseok Song
Int. J. Mol. Sci. 2025, 26(6), 2695; https://doi.org/10.3390/ijms26062695 - 17 Mar 2025
Cited by 1 | Viewed by 1543
Abstract
Biofilm-associated amyloid proteins have emerged as significant contributors to the progression of neurodegenerative diseases, representing a complex intersection of microorganisms and human health. The cross-beta sheet structure characteristic of amyloids produced by gut-colonizing bacteria remains intact, crucial for the resilience of biofilms. These [...] Read more.
Biofilm-associated amyloid proteins have emerged as significant contributors to the progression of neurodegenerative diseases, representing a complex intersection of microorganisms and human health. The cross-beta sheet structure characteristic of amyloids produced by gut-colonizing bacteria remains intact, crucial for the resilience of biofilms. These amyloids exacerbate neurodegenerative disorders such as Alzheimer’s and Parkinson’s by cross-seeding human amyloidogenic proteins like amyloid-beta and α-synuclein, accelerating their misfolding and aggregation. Despite molecular chaperones and heat shock proteins maintaining protein homeostasis, bacterial amyloids can overwhelm them, worsening neuronal damage. Genetic variations in chaperone genes further influence amyloidogenesis and neurodegeneration. Persistent bacterial infections and inflammation compromise the blood-brain barrier, allowing inflammatory molecules and amyloids to enter the brain, perpetuating the cycle of neurodegeneration. The gut-brain axis underscores the impact of dysbiosis and gut microbiota on brain function, potentially contributing to neurodegeneration. The enhancement of biofilm resilience and antibiotic resistance by functional amyloid fibrils complicates the treatment landscape. The interplay among chaperone systems, microbial amyloids, and neurodegenerative diseases underscores the urgent need for advanced treatment strategies targeting these pathways to attenuate disease progression. Understanding the processes that relate biofilm-associated amyloids to the onset of neurological disorders is critical for diagnosing and developing novel treatment strategies. Full article
Show Figures

Figure 1

20 pages, 4288 KiB  
Article
Eisenia bicyclis-Mediated Gold Nanoparticles Exhibit Antibiofilm and Antivirulence Activities Against Pseudomonas aeruginosa and Staphylococcus aureus
by Do Kyung Oh, Du-Min Jo, Nam-Gyun Kim, Kyung-Jin Cho, Geum-Jae Jeong, Nazia Tabassum, Won-Kyo Jung, Fazlurrahman Khan and Young-Mog Kim
Antibiotics 2025, 14(2), 182; https://doi.org/10.3390/antibiotics14020182 - 11 Feb 2025
Cited by 1 | Viewed by 1315
Abstract
Background/Objectives: Brown algae, particularly Eisenia bicyclis, produce various bioactive chemicals with significant application potential in the food, cosmetics, and pharmaceutical industries. This study aimed to evaluate the antibacterial, antibiofilm, and antivirulence properties of the ethyl acetate fraction (EA) of E. bicyclis and [...] Read more.
Background/Objectives: Brown algae, particularly Eisenia bicyclis, produce various bioactive chemicals with significant application potential in the food, cosmetics, and pharmaceutical industries. This study aimed to evaluate the antibacterial, antibiofilm, and antivirulence properties of the ethyl acetate fraction (EA) of E. bicyclis and its synthesized gold nanoparticles (EA-AuNPs), with a focus on their potential applications against both Gram-positive and Gram-negative bacteria. Methods: The bioactive component in the ethyl acetate fraction was identified using a gas chromatography-mass spectroscopy (GC-MS) device and a liquid chromatography-mass spectrometer/mass spectrometry (LC-MS) system. The crystal violet method was utilized to evaluate the biofilm inhibition experiments. Several instruments, including dynamic light scattering, Fourier transform infrared, X-ray diffraction, field emission transmission electron microscopy, and energy-dispersive spectroscopy, were employed to completely characterize the produced EA-AuNPs. The cytotoxicity of the EA-AuNPs was determined using the MTT assay, and the expression of genes linked with biofilm and virulence in Pseudomonas aeruginosa and Staphylococcus aureus was investigated using real-time polymerase chain reaction (RT-PCR). Results: Various bioactive compounds were identified from the EA using GC-MS and LC-MS, including fatty acids and phlorotannins such as eckol, dieckol, 6,6’-bieckol, and phlorofucofuroeckol in high amounts, highlighting EA as a phlorotannin-rich fraction. The EA also demonstrated significant antibiofilm activity, with 79.86% inhibition at 512 μg/mL against P. aeruginosa and 87.00% at 64 μg/mL against S. aureus. EA was then used in the synthesis of gold nanoparticles (AuNPs) to improve their stability and safety. The synthesized EA-AuNPs were determined to have an average size of 165.04 nm, with a zeta potential of −29.86 mV, indicating good stability. In antibiofilm activity assays, EA-AuNPs demonstrated 45.76% inhibition against P. aeruginosa at 1024 μg/mL and 44.64% inhibition against S. aureus at 128 μg/mL. At sub-MIC levels, EA-AuNPs significantly inhibited biofilm formation and virulence factors, including the motility of P. aeruginosa and staphyloxanthin synthesis in S. aureus. The RT-PCR analysis revealed the downregulation of key genes involved in biofilm formation and virulence in P. aeruginosa and S. aureus. Conclusions: These findings highlight the potential of E. bicyclis solvent-soluble extracts and EA-AuNPs as effective antibacterial, antibiofilm, and antivirulence agents, with significant application potential in the pharmaceutical and food industries. To the best of our knowledge, this is the first report of antibiofilm activity against both Gram-positive and Gram-negative bacteria using EA-AuNPs. Full article
(This article belongs to the Special Issue Innovations in Plant-Based Antibiotic and Antiviral Agents)
Show Figures

Figure 1

17 pages, 1902 KiB  
Article
Controlling Oral Polymicrobial Biofilm Using Usnic Acid on the Surface of Titanium in the Artificial Saliva Media
by Nazia Tabassum, Fazlurrahman Khan, Geum-Jae Jeong, Do Kyung Oh and Young-Mog Kim
Antibiotics 2025, 14(2), 115; https://doi.org/10.3390/antibiotics14020115 - 22 Jan 2025
Viewed by 1687
Abstract
Background/Objectives: Titanium dental implants, while highly successful, face challenges due to polymicrobial infections leading to peri-implantitis and implant failure. Biofilm formation on implant surfaces is the primary cause of these infections, with factors such as matrix production and cross-kingdom interactions contributing to the [...] Read more.
Background/Objectives: Titanium dental implants, while highly successful, face challenges due to polymicrobial infections leading to peri-implantitis and implant failure. Biofilm formation on implant surfaces is the primary cause of these infections, with factors such as matrix production and cross-kingdom interactions contributing to the microbial accumulation of bacterial and fungal pathogens species. To combat this issue, naturally derived molecules have been reported to overcome the hurdle of antimicrobial resistance against the application of conventional antibiotics and antifungals. Methods: The present study aimed to employ the lichen-derived molecules, usnic acid (UA), to retard the development of biofilms of bacterial and fungal pathogens on the surface of titanium kept in the human artificial saliva (HAS) working as a growth-supporting, host-mimicking media. Results: The minimum inhibitory concentration of UA in HAS towards Candida albicans was >512 µg/mL, whereas against Staphylococcus aureus and Streptococcus mutans, it was determined to be 512 µg/mL. Whereas, in the standard growth media, the MIC value of UA towards S. mutans and S. aureus were 8 and 16 µg/mL; however, against C. albicans, it was 512 µg/mL. UA synergistically enhanced the efficacy of the antibiotics toward bacterial pathogens and the efficacy of antifungals against C. albicans. The antibiofilm results depict the fact that in the HAS, UA significantly reduced both mono-species of S. mutans, S. aureus, and C. albicans and mixed-species biofilm of C. albicans with S. mutans and S. aureus on the surface of the titanium. Conclusions: The present study showed that UA is a promising natural drug that can control oral polymicrobial disease as a result of the application of dental implants. Full article
Show Figures

Figure 1

18 pages, 5416 KiB  
Article
Bacteria-Inspired Synthesis of Silver-Doped Zinc Oxide Nanocomposites: A Novel Synergistic Approach in Controlling Biofilm and Quorum-Sensing-Regulated Virulence Factors in Pseudomonas aeruginosa
by Abirami Karthikeyan, Manoj Kumar Thirugnanasambantham, Fazlurrahman Khan and Arun Kumar Mani
Antibiotics 2025, 14(1), 59; https://doi.org/10.3390/antibiotics14010059 - 9 Jan 2025
Cited by 4 | Viewed by 1632
Abstract
Multidrug-resistant Pseudomonas aeruginosa infections pose a critical challenge to healthcare systems, particularly in nosocomial settings. This drug-resistant bacterium forms biofilms and produces an array of virulent factors regulated by quorum sensing. In this study, metal-tolerant bacteria were isolated from a metal-contaminated site and [...] Read more.
Multidrug-resistant Pseudomonas aeruginosa infections pose a critical challenge to healthcare systems, particularly in nosocomial settings. This drug-resistant bacterium forms biofilms and produces an array of virulent factors regulated by quorum sensing. In this study, metal-tolerant bacteria were isolated from a metal-contaminated site and screened for their ability to synthesize multifunctional nanocomposites (NCs). Rapid color changes in the reaction solution evidenced the biotransformation process. The potent isolated Bacillus cereus SASAK, identified via 16S rRNA sequencing and deposited in GenBank under accession number MH885570, facilitated the microbial-mediated synthesis of ZnO nanoparticles and silver-doped ZnO NCs. These biogenic nanocomposites were characterized using UV-VIS-NIR spectroscopy, FTIR, XRD, zeta potential, HRTEM, FESEM, and EDX analyses. At a sub-MIC concentration of 100 µg/mL, 2% Ag-ZnO NCs effectively inhibited virulent factor production and biofilm formation in P. aeruginosa without affecting bacterial growth. Notably, there was a significant reduction in violacein pigment (96.25%), swarming motility, and pyocyanin concentration (1.87 µg/mL). Additionally, biofilm formation (81.1%) and EPS production (83.9%) using P. aeruginosa were substantially hindered, along with reduced extracellular protease activity, as indicated by zone formation (from 2.3 to 1.8 cm). This study underscores the potential of Ag-ZnO NCs as promising agents for combating quorum sensing-mediated virulence in chronic infections caused by multidrug-resistant P. aeruginosa. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Biofilm-Associated Infections)
Show Figures

Figure 1

33 pages, 10518 KiB  
Review
Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds
by Du-Min Jo, Nazia Tabassum, Do Kyung Oh, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Ji-Yul Kim, Gun-Woo Oh, Grace Choi, Dae-Sung Lee, Seul-Ki Park, Young-Mog Kim and Fazlurrahman Khan
Processes 2024, 12(11), 2316; https://doi.org/10.3390/pr12112316 - 22 Oct 2024
Cited by 2 | Viewed by 2275
Abstract
Infectious diseases continue to cause global morbidity and mortality. The rise of drug-resistant pathogens is a major challenge to modern medicine. Plant-based antimicrobials may solve this issue; hence, this review discussed in detail plant-sourced antimicrobial drugs as an alternative toward bacterial, fungal, and [...] Read more.
Infectious diseases continue to cause global morbidity and mortality. The rise of drug-resistant pathogens is a major challenge to modern medicine. Plant-based antimicrobials may solve this issue; hence, this review discussed in detail plant-sourced antimicrobial drugs as an alternative toward bacterial, fungal, and viral pathogens. Plant-derived chemicals from various sources such as marine, medicinal, and non-medicinal sources have diverse antimicrobial properties. Complex chemical profiles from these sources allow these molecules to interact with several targets in the microbial pathogens. Due to their multi-component composition, these compounds are more effective and less likely to acquire resistance than single-target antibiotics. Medicinal herbs have long been used for their antimicrobial properties; however, non-medicinal plants have also been identified for their antimicrobial properties. Other interesting new pathways for the identification of antimicrobials include marine plants, which contain a wide variety of metabolites that are both distinct and varied. We have conducted a thorough literature search for the medicinal, non-medicinal, and marine plant-derived molecules with antimicrobial roles from databases which include Scopus, PubMed, Google Scholar, and Web of Science. The review also discussed the synergistic potential of combining these plant-derived compounds with traditional antimicrobial drugs to attenuate the microbial pathogenesis. Based on the existing research and advancements, the review article emphasizes the importance of continuing research into plant-based antimicrobials from these many sources and integrating them with existing therapies to combat the rising threat of drug-resistant infections. Full article
Show Figures

Figure 1

18 pages, 3912 KiB  
Review
Detection of Mycotoxin Contamination in Foods Using Artificial Intelligence: A Review
by Ashish Aggarwal, Akanksha Mishra, Nazia Tabassum, Young-Mog Kim and Fazlurrahman Khan
Foods 2024, 13(20), 3339; https://doi.org/10.3390/foods13203339 - 21 Oct 2024
Cited by 14 | Viewed by 5465
Abstract
Mycotoxin contamination of foods is a major concern for food safety and public health worldwide. The contamination of agricultural commodities employed by humankind with mycotoxins (toxic secondary metabolites of fungi) is a major risk to the health of the human population. Common methods [...] Read more.
Mycotoxin contamination of foods is a major concern for food safety and public health worldwide. The contamination of agricultural commodities employed by humankind with mycotoxins (toxic secondary metabolites of fungi) is a major risk to the health of the human population. Common methods for mycotoxin detection include chromatographic separation, often combined with mass spectrometry (accurate but time-consuming to prepare the sample and requiring skilled technicians). Artificial intelligence (AI) has been introduced as a new technique for mycotoxin detection in food, providing high credibility and accuracy. This review article provides an overview of recent studies on the use of AI methods for the discovery of mycotoxins in food. The new approach demonstrated that a variety of AI technologies could be correlated. Deep learning models, machine learning algorithms, and neural networks were implemented to analyze elaborate datasets from different analytical platforms. In addition, this review focuses on the advancement of AI to work concomitantly with smart sensing technologies or other non-conventional techniques such as spectroscopy, biosensors, and imaging techniques for rapid and less damaging mycotoxin detection. We question the requirement for large and diverse datasets to train AI models, discuss the standardization of analytical methodologies, and discuss avenues for regulatory approval of AI-based approaches, among other top-of-mind issues in this domain. In addition, this research provides some interesting use cases and real commercial applications where AI has been able to outperform other traditional methods in terms of sensitivity, specificity, and time required. This review aims to provide insights for future directions in AI-enabled mycotoxin detection by incorporating the latest research results and stressing the necessity of multidisciplinary collaboration among food scientists, engineers, and computer scientists. Ultimately, the use of AI could revolutionize systems monitoring mycotoxins, improving food safety and safeguarding global public health. Full article
Show Figures

Figure 1

29 pages, 4597 KiB  
Review
From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides—Mechanisms and Applications
by Du-Min Jo, Fazlurrahman Khan, Seul-Ki Park, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Ji-Yul Kim, Gun-Woo Oh, Grace Choi, Dae-Sung Lee and Young-Mog Kim
Mar. Drugs 2024, 22(10), 449; https://doi.org/10.3390/md22100449 - 30 Sep 2024
Cited by 9 | Viewed by 5098
Abstract
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives [...] Read more.
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs’ active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides’ interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases. Full article
(This article belongs to the Special Issue Marine Proteins and Enzymes: Bioactivities and Medicinal Applications)
Show Figures

Figure 1

20 pages, 3903 KiB  
Review
Artificial Intelligence-Driven Analysis of Antimicrobial-Resistant and Biofilm-Forming Pathogens on Biotic and Abiotic Surfaces
by Akanksha Mishra, Nazia Tabassum, Ashish Aggarwal, Young-Mog Kim and Fazlurrahman Khan
Antibiotics 2024, 13(8), 788; https://doi.org/10.3390/antibiotics13080788 - 22 Aug 2024
Cited by 11 | Viewed by 4301
Abstract
The growing threat of antimicrobial-resistant (AMR) pathogens to human health worldwide emphasizes the need for more effective infection control strategies. Bacterial and fungal biofilms pose a major challenge in treating AMR pathogen infections. Biofilms are formed by pathogenic microbes encased in extracellular polymeric [...] Read more.
The growing threat of antimicrobial-resistant (AMR) pathogens to human health worldwide emphasizes the need for more effective infection control strategies. Bacterial and fungal biofilms pose a major challenge in treating AMR pathogen infections. Biofilms are formed by pathogenic microbes encased in extracellular polymeric substances to confer protection from antimicrobials and the host immune system. Biofilms also promote the growth of antibiotic-resistant mutants and latent persister cells and thus complicate therapeutic approaches. Biofilms are ubiquitous and cause serious health risks due to their ability to colonize various surfaces, including human tissues, medical devices, and food-processing equipment. Detection and characterization of biofilms are crucial for prompt intervention and infection control. To this end, traditional approaches are often effective, yet they fail to identify the microbial species inside biofilms. Recent advances in artificial intelligence (AI) have provided new avenues to improve biofilm identification. Machine-learning algorithms and image-processing techniques have shown promise for the accurate and efficient detection of biofilm-forming microorganisms on biotic and abiotic surfaces. These advancements have the potential to transform biofilm research and clinical practice by allowing faster diagnosis and more tailored therapy. This comprehensive review focuses on the application of AI techniques for the identification of biofilm-forming pathogens in various industries, including healthcare, food safety, and agriculture. The review discusses the existing approaches, challenges, and potential applications of AI in biofilm research, with a particular focus on the role of AI in improving diagnostic capacities and guiding preventative actions. The synthesis of the current knowledge and future directions, as described in this review, will guide future research and development efforts in combating biofilm-associated infections. Full article
Show Figures

Figure 1

16 pages, 3291 KiB  
Review
Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies
by Akanksha Mishra, Ashish Aggarwal and Fazlurrahman Khan
Antibiotics 2024, 13(7), 623; https://doi.org/10.3390/antibiotics13070623 - 4 Jul 2024
Cited by 38 | Viewed by 8158
Abstract
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive [...] Read more.
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens. Full article
Show Figures

Figure 1

23 pages, 2058 KiB  
Review
Indole-3-Carbinol and Its Derivatives as Neuroprotective Modulators
by Alka Ashok Singh, Dhananjay Yadav, Fazlurrahman Khan and Minseok Song
Brain Sci. 2024, 14(7), 674; https://doi.org/10.3390/brainsci14070674 - 2 Jul 2024
Cited by 9 | Viewed by 3785
Abstract
Brain-derived neurotrophic factor (BDNF) and its downstream tropomyosin receptor kinase B (TrkB) signaling pathway play pivotal roles in the resilience and action of antidepressant drugs, making them prominent targets in psychiatric research. Oxidative stress (OS) contributes to various neurological disorders, including neurodegenerative diseases, [...] Read more.
Brain-derived neurotrophic factor (BDNF) and its downstream tropomyosin receptor kinase B (TrkB) signaling pathway play pivotal roles in the resilience and action of antidepressant drugs, making them prominent targets in psychiatric research. Oxidative stress (OS) contributes to various neurological disorders, including neurodegenerative diseases, stroke, and mental illnesses, and exacerbates the aging process. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) serves as the primary cellular defense mechanism against OS-induced brain damage. Thus, Nrf2 activation may confer endogenous neuroprotection against OS-related cellular damage; notably, the TrkB/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, stimulated by BDNF-dependent TrkB signaling, activates Nrf2 and promotes its nuclear translocation. However, insufficient neurotrophin support often leads to the downregulation of the TrkB signaling pathway in brain diseases. Thus, targeting TrkB activation and the Nrf2-ARE system is a promising therapeutic strategy for treating neurodegenerative diseases. Phytochemicals, including indole-3-carbinol (I3C) and its metabolite, diindolylmethane (DIM), exhibit neuroprotective effects through BDNF’s mimetic activity; Akt phosphorylation is induced, and the antioxidant defense mechanism is activated by blocking the Nrf2-kelch-like ECH-associated protein 1 (Keap1) complex. This review emphasizes the therapeutic potential of I3C and its derivatives for concurrently activating neuronal defense mechanisms in the treatment of neurodegenerative diseases. Full article
Show Figures

Figure 1

15 pages, 2014 KiB  
Article
Optimization of Protease Treatment Conditions for Chlorella pyrenoidosa Protein Extraction and Investigation of Its Potential as an Alternative Protein Source
by Kyung-Jin Cho, Min-Ung Kim, Geum-Jae Jeong, Fazlurrahman Khan, Du-Min Jo and Young-Mog Kim
Foods 2024, 13(3), 366; https://doi.org/10.3390/foods13030366 - 23 Jan 2024
Cited by 3 | Viewed by 2788
Abstract
This study aimed to determine enzymes that effectively extract Chlorella pyrenoidosa proteins and optimize the processing conditions using response surface methods. Furthermore, the potential of enzymatically hydrolyzed C. pyrenoidosa protein extract (CPE) as a substitute protein source was investigated. The enzymatic hydrolysis conditions [...] Read more.
This study aimed to determine enzymes that effectively extract Chlorella pyrenoidosa proteins and optimize the processing conditions using response surface methods. Furthermore, the potential of enzymatically hydrolyzed C. pyrenoidosa protein extract (CPE) as a substitute protein source was investigated. The enzymatic hydrolysis conditions for protein extraction were optimized using single-factor analysis and a response surface methodology–Box–Behnken design. The R2 value of the optimized model was 0.9270, indicating the reliability of the model, and the optimal conditions were as follows: a hydrolysis temperature of 45.56 °C, pH 9.1, and a hydrolysis time of 49.85 min. The amino acid composition of CPE was compared to that of C. pyrenoidosa powder (CP), which was found to have a higher content of essential amino acids (EAA). The electrophoretic profiles of CP and CPE confirmed that CPE has a low molecular weight. Furthermore, CPE showed higher antioxidant activity and phenol content than CP, with ABTS and DPPH radical scavenging abilities of 69.40 ± 1.61% and 19.27 ± 3.16%, respectively. CPE had high EAA content, antioxidant activity, and phenol content, indicating its potential as an alternative protein source. Overall, in this study, we developed an innovative, ecofriendly, and gentle enzymatic hydrolysis strategy for the extraction and refinement of Chlorella proteins. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

Back to TopTop