From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides—Mechanisms and Applications
Abstract
:1. Introduction
2. Angiotensin I-Converting Enzyme (ACE)
3. Therapeutic Application of Inhibitory Peptides from the Different Marine Organisms and Their Action Mechanisms
3.1. ACE-Inhibitory Peptides from Marine Animals
3.2. ACE-Inhibitory Peptides from Marine Seaweeds
4. Possible Extraction and Purification Approaches of ACE-Inhibitory Peptides
5. In Vivo and Clinical Studies
Name | Tissue | IC50 | Peptide Sequence | Animal Model | Concentration | Action and Role | Reference |
---|---|---|---|---|---|---|---|
Mackerel pike (Pacific saury) | muscle | 99.5 μmol/L | LEPWR | Spontaneously hypertensive rat | 2000 mg/kg BW | - Reduced SBP from 181 mmHg to 168.5 mmHg, with maximum effect observed at 8 h | [66] |
Nile tilapia (Oreochromis niloticus) | muscle | 2.577 μmol/L | LSGYGP | SHR | 10 mg/kg BW | - Significantly reduced SBP in SHRs by 20 mmHg, with the effect noticeable 2 h post-administration and maintained for 9 h | [144] |
Yellowbelly pufferfish (Takifugu flavidus) | muscle | 0.58 mg/mL | PPLLFAAL | SHR | 5 mg/kg BW | - SBP reduction from 193 to 145 mmHg at 4 h which then gradually recovered to 154 mmHg at 24 h - DBP decreased significantly from 135 to 107 mmHg at 4 h and then recovered to 113 mmHg at 24 h | [53] |
Sargassum maclurei | - | 72.24 μmol/L | RWDISQPY | SHR | 150 mg/kg BW | - Significantly reduced both DBP and SBP in SHRs from the second week | [145] |
Manila clam (Ruditapes philippinarum) | muscle | 1.37 μmol/L | TYLPVH | SHR | 10.0 mg/kg BW | - A maximum SBP reduction of 26.47 mmHg at 6 h | [77] |
Flounder | muscle | MEVFVP | SHR | 40 mg/kg BW | - Decrease in SBP between 3–6 h and reduced ET-1 mRNA expression, plasma levels of ET-1, angiotensin II, and aldosterone | [146] | |
Yellowbelly pufferfish (Takifugu flavidus) | muscle | 93.5 μmol/L | TLRFALHGME | SHR | 4 mg/kg BW | - Notable reduction in SBP was observed between 2 and 8 h, with the lowest recorded SBP of 171 mmHg at 4 h - By 8 h, the SBP gradually increased, returning to 190 mmHg | [60] |
Manila clam (Ruditapes philippinarum) | - | - | DOCA–salt hypertensive rats | 400 mg/kg BW | - Both systolic and diastolic blood pressure significantly decreased within one week - Systolic blood pressure normalized after five weeks | [147] | |
Leathery sea squirt (Styela clava) | - | 16.48 μmol/L | LWHTH | Spontaneously hypertensive rat (SHR) | 40 mg/kg BW | - Significantly reduced both SBP and DBP with maximum reductions observed at 3 h The SBP decreased by 89.4% from 207.6 mmHg to 185.4 mmHg, and DBP showed a similar reduction trend | [85] |
Sea cucumber (Apostichopus japonicus) | gonad | 583.6 μmol/L | HDWWKER | SHR | 12 mg/kg | - Significantly reduced SBP between 2 and 8 h, with the lowest SBP of 176 mmHg occurring at 4 h | [86] |
Seahorse (Hippocampus abdominalis) | - | 0.088 mg/mL | CNVPLSP | SHR | 100 mg/kg BW | - Significantly decreased the SBP by the action of ACE inhibition | [71] |
Oyster (Crassostrea gigas) | - | 4.287 mmol/L | AEYLCEAC | SHR | 15 mg/kg BW | - In a 12 h trial, significantly lower SBP and DBP, with the lowest values at 3 h - The 4-week trial also showed downregulated Ren1 and Agtr1 gene expression and upregulated Adrb3 in rats’ kidneys | [79] |
Marine fish Cobia (Rachycentron canadum) | skin | 0.51 μmol/L | IWW | SHR | 56.7 mg of peptide/BW | - Significant decrease in SBP by 21.9 mmHg and DBP by 15.5 mmHg within 2 to 8 h, with levels returning to baseline after 24 h | [148] |
Nile tilapia (Oreochromis niloticus) | skin | 68.35 μmol/L | QAGLSPVR | SHR | 20 mg/kg BW | - Significant decrease in both SBP and DBP, with reductions of 41.86 mmHg and 40.40 mmHg, respectively, observed 3 h post-administration | [131] |
Cuttlefish (Sepia officinalis) | muscle | 5.22 μmol/L | VELYP | SHR | 10 mg/kg BW | - Significantly reduced SBP and DBP, with the most potent SBP reduction (20 mmHg) occurring at 6 h and the maximal DBP reduction (14.7 mmHg) at 2 h. | [149] |
Scallop (Chlamys farreri) | skirt | 0.74 mg/mL | AGFAGDDAPR | SHR | 50 mg/kg | - A maximum SBP reduction of 56.19 mmHg and DBP reduction of 15.43 mmHg at 6 h after a single administration, and even more pronounced effects after 8 weeks of continuous administration | [18] |
Pearl oyster (Pinctada fucata) | muscle | 109.25 μmol/L | GWA | SD rat | 10 mg/kg BW | - Significant reductions in SBP and DBP, with a maximum SBP decrease of 16.7 mmHg and DBP decrease of 20.7 mmHg after 20 min | [116] |
Manila clam (Ruditapes philippinarum) | meat | 8.16 μmol/L | VISDEDGVTH | SHR | 8 mg/kg | - Reduced SBP by 22.1% and DBP by 18.6% at 8 h post-gavage, with blood pressure returning to baseline after 24 h - Over an 8-week trial, RBPs led to a 30.0% decrease in SBP and a 29.4% decrease in DBP | [150] |
Gracilariopsis lemaneiformis | - | 9.64 μmol/L | CILR | SHR | 10 mg/kg BW | - Reduced SBP showing a greater reduction (34 mmHg) from 204 to 170 mmHg at 2 h significantly reduced DBP from 145 to 118 mmHg at 2 h | [151] |
Styela clava | flesh | - | - | Human | 500 mg/day, capsule | - Significant decrease in both SBP and DBP | [132] |
Katsuwonus pelamis | - | 2.4 μg/mL | LKPNM | Human | 5 mg/day | - Significant decrease in blood pressure | [133] |
Shrimp (Pandalus borealis) | - | - | - | Human | 1200 mg | - Angiotensin II levels were significantly reduced relative to baseline | [134] |
6. Conclusions and Future Perspectives
- Research on marine species as a source of bioactive peptides is still in its infancy. The vast and unknown marine life holds enormous potential for discovering novel ACE-inhibitory peptides. Underused marine species should be studied to uncover new peptide candidates with greater medicinal value;
- To increase the synthesis and bioactivity of ACE-inhibitory peptides, novel extraction and purification procedures are required. Future research might include high-throughput screening, novel hydrolysis enzyme systems, and improved chromatographic methods. These advancements may enhance industrial scalability, separation efficiency, and peptide purity;
- Detailed structural investigations, such as X-ray crystallography and NMR spectroscopy, are necessary to comprehend the interaction processes between ACE and marine-derived peptides. Future research should clarify these peptides’ binding interactions, conformational changes, and dynamics. This understanding will help create peptides with better binding affinity and specificity, possibly improving antihypertensive drugs;
- In vivo animal studies have shown encouraging results, but human clinical trials are necessary to validate marine-derived peptides’ safety, effectiveness, and bioavailability. Future research should emphasize clinical studies to investigate these peptides’ long-term effects, appropriate dose regimes, and drug interactions. Successful clinical validation might allow these peptides to be used in mainstream therapy;
- Marine-derived peptides may improve customized hypertension treatment. In future studies, peptide-based drugs might be tailored to genetic profiles, clinical issues, and lifestyle variables. Selecting peptides that fit an individual’s physiological demands may enhance treatment success and reduce negative effects;
- Marine-derived ACE-inhibitory peptides for functional foods and nutraceuticals are becoming popular. Future supplements, fortified meals, and beverages should include peptides. Research should enhance these peptides’ stability and bioavailability in food to ensure efficacy and consumer appeal;
- Addressing sustainability and environmental impacts is critical as marine-derived peptide demand increases. Sustainable harvesting, aquaculture for peptide manufacture, and marine by-product usage are needed to decrease waste. Making peptide extraction and manufacturing eco-friendly will help this method to persist;
- Regulatory and legislative frameworks are essential for marine-derived peptide clinical and industrial uses. Future regulatory studies should advocate peptide-based product safety, efficacy, and quality control. Clear regulatory pathways will help innovative therapies become approved.
Author Contributions
Funding
Conflicts of Interest
References
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Seravalle, G.; Grassi, G. Renin–angiotensin–aldosterone system and blood pressure regulation. In Endocrine Hypertension; Elsevier: Amsterdam, The Netherlands, 2023; pp. 63–75. [Google Scholar]
- Ghionzoli, N.; Gentile, F.; Del Franco, A.M.; Castiglione, V.; Aimo, A.; Giannoni, A.; Burchielli, S.; Cameli, M.; Emdin, M.; Vergaro, G. Current and emerging drug targets in heart failure treatment. Heart Fail. Rev. 2022, 27, 1119–1136. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Ashique, S.; Upadhyay, A.; Kumar, S.; Kumar, H.; Kumar, N.; Kumar, P. Current landscape of therapeutics for the management of hypertension-a review. Curr. Drug Deliv. 2024, 21, 662–682. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol. 2022, 20, 14. [Google Scholar] [CrossRef]
- Sridhar, K.; Inbaraj, B.S.; Chen, B.-H. Recent developments on production, purification and biological activity of marine peptides. Food Res. Int. 2021, 147, 110468. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.A.; Pintado, M.E. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Macedo, M.W.F.S.; Cunha, N.B.d.; Carneiro, J.A.; Costa, R.A.; Alencar, S.A.; Cardoso, M.H.; Franco, O.L.; Dias, S.C. Marine organisms as a rich source of biologically active peptides. Front. Mar. Sci. 2021, 8, 667764. [Google Scholar] [CrossRef]
- Walquist, M.J.; Eilertsen, K.-E.; Elvevoll, E.O.; Jensen, I.-J. Marine-Derived Peptides with Anti-Hypertensive Properties: Prospects for Pharmaceuticals, Supplements, and Functional Food. Mar. Drugs 2024, 22, 140. [Google Scholar] [CrossRef] [PubMed]
- Ashaolu, T.J.; Pham, B.P.; Molnár, Z.; Varga, L.; Greff, B. The structure–activity relationship of marine peptides: A review. Int. J. Food Sci. Technol. 2024, 59, 4437–4445. [Google Scholar] [CrossRef]
- Xiang, L.; Qiu, Z.; Zhao, R.; Zheng, Z.; Qiao, X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit. Rev. Food Sci. Nutr. 2023, 63, 1437–1463. [Google Scholar] [CrossRef] [PubMed]
- Chamata, Y.; Watson, K.A.; Jauregi, P. Whey-derived peptides interactions with ACE by molecular docking as a potential predictive tool of natural ACE inhibitors. Int. J. Mol. Sci. 2020, 21, 864. [Google Scholar] [CrossRef] [PubMed]
- Kurnianto, M.A.; Defri, I.; Syahbanu, F.; Aulia, S.S. Fish-Derived Bioactive Peptide: Bioactivity Potency, Structural Characteristics, and Conventional and Bioinformatics Approaches for Identification. Future Foods 2024, 9, 100386. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Cardioprotective peptides from marine sources. Curr. Protein Pept. Sci. 2013, 14, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant, and antidiabetic properties. J. Food Sci. 2018, 83, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, P.; Cian, R.E.; Drago, S.R. Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans). Handb. Food Bioact. Ingred. Prop. Appl. 2023, 1–30. [Google Scholar]
- Gao, J.; Liu, Q.; Zhao, L.; Yu, J.; Wang, S.; Cao, T.; Gao, X.; Wei, Y. Identification and antihypertension study of novel angiotensin I-converting enzyme inhibitory peptides from the skirt of Chlamys farreri fermented with Bacillus natto. J. Agric. Food Chem. 2020, 69, 146–158. [Google Scholar] [CrossRef]
- Giuliani, M.E.; Bigossi, G.; Lai, G.; Marcozzi, S.; Brunetti, D.; Malavolta, M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar. Drugs 2024, 22, 210. [Google Scholar] [CrossRef]
- Rauf, A.; Khalil, A.A.; Khan, M.; Anwar, S.; Alamri, A.; Alqarni, A.M.; Alghamdi, A.; Alshammari, F.; Rengasamy, K.R.; Wan, C. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health? Crit. Rev. Food Sci. Nutr. 2022, 62, 7072–7116. [Google Scholar] [CrossRef]
- Chi, C.-F.; Wang, B. Marine Bioactive Peptides—Structure, Function and Application. Mar. Drugs 2023, 21, 275. [Google Scholar] [CrossRef] [PubMed]
- Pujiastuti, D.Y.; Ghoyatul Amin, M.N.; Alamsjah, M.A.; Hsu, J.-L. Marine organisms as potential sources of bioactive peptides that inhibit the activity of angiotensin I-converting enzyme: A review. Molecules 2019, 24, 2541. [Google Scholar] [CrossRef]
- Dresler, J.; Avella, I.; Damm, M.; Dersch, L.; Krämer, J.; Vilcinskas, A.; Lüddecke, T. A roadmap to the enzymes from spider venom: Biochemical ecology, molecular diversity, and value for the bioeconomy. Front. Arachn. Sci. 2024, 3, 1445500. [Google Scholar] [CrossRef]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef] [PubMed]
- Khurana, V.; Goswami, B. Angiotensin converting enzyme (ACE). Clin. Chim. Acta 2022, 524, 113–122. [Google Scholar] [CrossRef]
- da Silva, R.L.; Papakyriakou, A.; Carmona, A.K.; Spyroulias, G.A.; Sturrock, E.D.; Bersanetti, P.A.; Nakaie, C.R. Peptide inhibitors of angiotensin-I converting enzyme based on angiotensin (1–7) with selectivity for the C-terminal domain. Bioorg. Chem. 2022, 129, 106204. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, P.; Gomez, J.; Grobe, J.L.; Sigmund, C.D. The renin-angiotensin system in the central nervous system and its role in blood pressure regulation. Curr. Hypertens. Rep. 2020, 22, 7. [Google Scholar] [CrossRef]
- Laghlam, D.; Jozwiak, M.; Nguyen, L.S. Renin–angiotensin–aldosterone system and immunomodulation: A state-of-the-art review. Cells 2021, 10, 1767. [Google Scholar] [CrossRef] [PubMed]
- Tsilosani, A.; Gao, C.; Zhang, W. Aldosterone-regulated sodium transport and blood pressure. Front. Physiol. 2022, 13, 770375. [Google Scholar] [CrossRef] [PubMed]
- Norambuena-Soto, I.; Lopez-Crisosto, C.; Martinez-Bilbao, J.; Hernandez-Fuentes, C.; Parra, V.; Lavandero, S.; Chiong, M. Angiotensin-(1–9) in hypertension. Biochem. Pharmacol. 2022, 203, 115183. [Google Scholar] [CrossRef]
- Ma, K.; Gao, W.; Xu, H.; Liang, W.; Ma, G. Role and mechanism of the renin-angiotensin-aldosterone system in the onset and development of cardiorenal syndrome. J. Renin-Angiotensin-Aldosterone Syst. 2022, 2022, 3239057. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, J.; Montezano, A.C.; Touyz, R.M. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: Vasoprotection to COVID-19-associated vascular disease. Clin. Sci. 2021, 135, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Gamiño-Gutiérrez, J.A.; Terán-Hernández, I.M.; Castellar-Lopez, J.; Villamizar-Villamizar, W.; Osorio-Llanes, E.; Palacios-Cruz, M.; Rosales, W.; Chang, A.Y.; Díaz-Ariza, L.A.; Ospino, M.C. Novel Insights into the Cardioprotective Effects of the Peptides of the Counter-Regulatory Renin–Angiotensin System. Biomedicines 2024, 12, 255. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Khan, H.; Haque, S.; Ahmad, S.; Srivastava, N.; Khan, A. Angiotensin-converting enzyme and hypertension: A systemic analysis of various ACE inhibitors, their side effects, and bioactive peptides as a putative therapy for hypertension. J. Renin-Angiotensin-Aldosterone Syst. 2023, 2023, 7890188. [Google Scholar] [CrossRef] [PubMed]
- Bryniarski, P.; Nazimek, K.; Marcinkiewicz, J. Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs—Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. Int. J. Mol. Sci. 2022, 23, 1772. [Google Scholar] [CrossRef]
- Ishak, N.H.; Shaik, M.I.; Yellapu, N.K.; Howell, N.K.; Sarbon, N.M. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate. J. Food Sci. Technol. 2021, 58, 4567–4577. [Google Scholar] [CrossRef] [PubMed]
- Houglum, J.E.; Harrelson, G.L.; Seefeldt, T.M. Drugs for Treating Hypertension and Heart Disease. In Principles of Pharmacology for Athletic Trainers; Routledge: London, UK, 2024; pp. 210–235. [Google Scholar]
- Ghatage, T.; Goyal, S.G.; Dhar, A.; Bhat, A. Novel therapeutics for the treatment of hypertension and its associated complications: Peptide-and nonpeptide-based strategies. Hypertens. Res. 2021, 44, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Kriszta, G.; Kriszta, Z.; Vancsa, S.; Hegyi, P.J.; Frim, L.; Erőss, B.; Hegyi, P.; Pethő, G.; Pinter, E. Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on angiotensin-converting enzyme 2 levels: A comprehensive analysis based on animal studies. Front. Pharmacol. 2021, 12, 619524. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Kehinde, B.A.; Sharma, P.; Sharma, D.; Kaur, S. Recently isolated food-derived antihypertensive hydrolysates and peptides: A review. Food Chem. 2021, 346, 128719. [Google Scholar] [CrossRef] [PubMed]
- Olalere, O.A.; Yap, P.-G.; Gan, C.-Y. Comprehensive review on some food-derived bioactive peptides with anti-hypertension therapeutic potential for angiotensin-converting enzyme (ACE) inhibition. J. Proteins Proteom. 2023, 14, 129–161. [Google Scholar] [CrossRef]
- Zhu, W.-Y.; Wang, Y.-M.; Ge, M.-X.; Wu, H.-W.; Zheng, S.-L.; Zheng, H.-Y.; Wang, B. Production, identification, in silico analysis, and cytoprotection on H2O2-induced HUVECs of novel angiotensin-I-converting enzyme inhibitory peptides from Skipjack tuna roes. Front. Nutr. 2023, 10, 1197382. [Google Scholar] [CrossRef]
- Kaewsahnguan, T.; Noitang, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. A novel angiotensin I-converting enzyme inhibitory peptide derived from the trypsin hydrolysates of salmon bone proteins. PLoS ONE 2021, 16, e0256595. [Google Scholar] [CrossRef] [PubMed]
- Echave, J.; Otero, P.; Garcia-Oliveira, P.; Munekata, P.E.; Pateiro, M.; Lorenzo, J.M.; Simal-Gandara, J.; Prieto, M.A. Seaweed-derived proteins and peptides: Promising marine bioactives. Antioxidants 2022, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Chang, J.-S. Proteins and bioactive peptides from algae: Insights into antioxidant, anti-hypertensive, anti-diabetic and anti-cancer activities. Trends Food Sci. Technol. 2024, 145, 104352. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Gani, A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem. 2022, 373, 131395. [Google Scholar] [CrossRef]
- Islam, M.R.; Dhar, P.S.; Akash, S.; Syed, S.H.; Gupta, J.K.; Gandla, K.; Akter, M.; Rauf, A.; Hemeg, H.A.; Anwar, Y. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: Focus on molecular mechanisms and targeted therapies. Nat. Prod. Bioprospect. 2023, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Asgher, M.; Sher, F.; Hussain, S.M.; Nazish, N.; Joshi, N.; Sharma, A.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H.M. Exploring marine as a rich source of bioactive peptides: Challenges and opportunities from marine pharmacology. Mar. Drugs 2022, 20, 208. [Google Scholar] [CrossRef] [PubMed]
- Okeke, E.S.; Okagu, I.U.; Chukwudozie, K.; Ezike, T.C.; Ezeorba, T.P.C. Marine-Derived Bioactive Proteins and Peptides: A Review of Current Knowledge on Anticancer Potentials, Clinical Trials, and Future Prospects. Nat. Prod. Commun. 2024, 19, 1934578X241239825. [Google Scholar] [CrossRef]
- Festa, M.; Sansone, C.; Brunet, C.; Crocetta, F.; Di Paola, L.; Lombardo, M.; Bruno, A.; Noonan, D.M.; Albini, A. Cardiovascular active peptides of marine origin with ACE inhibitory activities: Potential role as anti-hypertensive drugs and in prevention of SARS-CoV-2 infection. Int. J. Mol. Sci. 2020, 21, 8364. [Google Scholar] [CrossRef] [PubMed]
- Pangestuti, R.; Kim, S.-K. Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar. Drugs 2017, 15, 67. [Google Scholar] [CrossRef]
- Hu, Y.-D.; Xi, Q.-H.; Kong, J.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from the collagens of monkfish (Lophius litulon) swim bladders: Isolation, characterization, molecular docking analysis and activity evaluation. Mar. Drugs 2023, 21, 516. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, S.; Cai, S.; Liu, S.; Pan, N.; Su, J.; Qiao, K.; Xu, M.; Chen, B.; Yang, S. A novel angiotensin-I-converting enzyme (ACE) inhibitory peptide from Takifugu flavidus. Mar. Drugs 2021, 19, 651. [Google Scholar] [CrossRef] [PubMed]
- Zu, X.-Y.; Zhao, Y.-N.; Liang, Y.; Li, Y.-Q.; Wang, C.-Y.; Zhao, X.-Z.; Wang, H. Research on the screening and inhibition mechanism of angiotensin I-converting enzyme (ACE) inhibitory peptides from tuna dark muscle. Food Biosci. 2024, 59, 103956. [Google Scholar] [CrossRef]
- Yang, G.; Qin, S.; Li, W. Purification and characterization of a novel angiotensin I-converting enzyme-inhibitory peptide derived from Alaska pollack skins. J. Food Sci. 2021, 86, 2457–2467. [Google Scholar] [CrossRef]
- Mongkonkamthorn, N.; Malila, Y.; Yarnpakdee, S.; Makkhun, S.; Regenstein, J.M.; Wangtueai, S. Production of protein hydrolysate containing antioxidant and angiotensin-I-converting enzyme (ACE) inhibitory activities from tuna (Katsuwonus pelamis) blood. Processes 2020, 8, 1518. [Google Scholar] [CrossRef]
- Liu, W.-Y.; Feng, X.-W.; Cheng, Q.-L.; Zhao, X.-H.; Li, G.-M.; Gu, R.-Z. Identification and action mechanism of low-molecular-weight peptides derived from Atlantic salmon (Salmo salar L.) skin inhibiting angiotensin I–converting enzyme. LWT 2021, 150, 111911. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Wen, Y.; Yuan, W.; Chen, H.; Lin, L.; Guo, F.; Zheng, Z.-P.; Zhao, C. The novel angiotensin-I-converting enzyme inhibitory peptides from Scomber japonicus muscle protein hydrolysates: QSAR-based screening, molecular docking, kinetic and stability studies. Food Chem. 2024, 447, 138873. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, C.; Huang, B.; Chen, Y.; Liu, Z.; Chen, H.; Chen, J. Biodirected Screening and Preparation of Larimichthys crocea Angiotensin-I-Converting Enzyme-Inhibitory Peptides by a Combined In Vitro and In Silico Approach. Molecules 2024, 29, 1134. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, S.; Liu, S.; Wang, Y.; Chen, X.; Xu, M.; Cai, S.; Pan, N.; Qiao, K.; Chen, B. Affinity Purification and Molecular Characterization of Angiotensin-Converting Enzyme (ACE)-Inhibitory Peptides from Takifugu flavidus. Mar. Drugs 2023, 21, 522. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Dai, Z.; Jin, R. Purification and identification of a novel angiotensin converting enzyme inhibitory peptide from the enzymatic hydrolysate of Lepidotrigla microptera. Foods 2022, 11, 1889. [Google Scholar] [CrossRef] [PubMed]
- Suo, S.-K.; Zheng, S.-L.; Chi, C.-F.; Luo, H.-Y.; Wang, B. Novel angiotensin-converting enzyme inhibitory peptides from tuna byproducts—Milts: Preparation, characterization, molecular docking study, and antioxidant function on H2O2-damaged human umbilical vein endothelial cells. Front. Nutr. 2022, 9, 957778. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yu, Z.; Zhao, W.; Ding, L.; Zheng, F.; Li, J.; Liu, J. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea titin. Food Sci. Hum. Wellness 2020, 9, 257–263. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, W.; Jayawardena, T.U.; Kang, N.; Kang, M.C.; Ko, S.-C.; Lee, J.M.; Yim, M.-J.; Lee, D.-S.; Jeon, Y.-J. Potential precursor of angiotensin-I converting enzyme (ACE) inhibitory activity and structural properties of peptide from peptic hydrolysate of cutlassfish muscle. J. Aquat. Food Prod. Technol. 2020, 29, 544–552. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, W.; Zhang, Y.-Q.; Dai, Z.-Y. A novel angiotensin-converting enzyme (ACE) inhibitory peptide from tilapia skin: Preparation, identification and its potential antihypertensive mechanism. Food Chem. 2024, 430, 137074. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Wang, H.; Hu, Z.; Xie, X.; Chen, H.; Tu, Z. Identification of novel angiotensin converting enzyme (ACE) inhibitory peptides from Pacific saury: In vivo antihypertensive effect and transport route. Int. J. Biol. Macromol. 2024, 254, 127196. [Google Scholar] [CrossRef]
- Cao, J.; Xiang, B.; Dou, B.; Hu, J.; Zhang, L.; Kang, X.; Lyu, M.; Wang, S. Novel Angiotensin-Converting Enzyme-Inhibitory Peptides Obtained from Trichiurus lepturus: Preparation, Identification and Potential Antihypertensive Mechanism. Biomolecules 2024, 14, 581. [Google Scholar] [CrossRef]
- Hua, X.; Sun, L.; Zhong, C.; Wu, Q.; Xiao, P.; Yoshida, A.; Liu, G.; Cao, M. Successive digestion of tilapia collagen by serine proteinase and proline specific endopeptidase to produce novel angiotensin I-converting enzyme inhibitory peptides. Mar. Life Sci. Technol. 2020, 2, 268–278. [Google Scholar] [CrossRef]
- Zheng, S.-L.; Luo, Q.-B.; Suo, S.-K.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Preparation, identification, molecular docking study and protective function on HUVECs of novel ACE inhibitory peptides from protein hydrolysate of skipjack tuna muscle. Mar. Drugs 2022, 20, 176. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ji, H.; Luo, J.; Zhang, D.; Liu, S. Two novel angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibiting peptides from tilapia (Oreochromis mossambicus) skin and their molecular docking mechanism. J. Food Sci. 2024, 89, 3603–3617. [Google Scholar] [CrossRef] [PubMed]
- Je, J.-G.; Kim, H.-S.; Lee, H.-G.; Oh, J.-Y.; Lu, Y.A.; Wang, L.; Rho, S.; Jeon, Y.-J. Low-molecular weight peptides isolated from seahorse (Hippocampus abdominalis) improve vasodilation via inhibition of angiotensin-converting enzyme in vivo and in vitro. Process Biochem. 2020, 95, 30–35. [Google Scholar] [CrossRef]
- Qiao, Q.-Q.; Luo, Q.-B.; Suo, S.-K.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Preparation, characterization, and cytoprotective effects on HUVECs of fourteen novel angiotensin-I-converting enzyme inhibitory peptides from protein hydrolysate of tuna processing by-products. Front. Nutr. 2022, 9, 868681. [Google Scholar] [CrossRef]
- Shao, M.; Wu, H.; Wang, B.; Zhang, X.; Gao, X.; Jiang, M.; Su, R.; Shen, X. Identification and characterization of novel ACE inhibitory and antioxidant peptides from Sardina pilchardus hydrolysate. Foods 2023, 12, 2216. [Google Scholar] [CrossRef] [PubMed]
- Auwal, S.M.; Zainal Abidin, N.; Zarei, M.; Tan, C.P.; Saari, N. Identification, structure-activity relationship and in silico molecular docking analyses of five novel angiotensin I-converting enzyme (ACE)-inhibitory peptides from stone fish (Actinopyga lecanora) hydrolysates. PLoS ONE 2019, 14, e0197644. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Wang, H.; Liu, J.; Hu, Y.; Tu, Z. Angiotensin converting enzyme (ACE) inhibitory peptide from the tuna (Thunnus thynnus) muscle: Screening, interaction mechanism and stability. Int. J. Biol. Macromol. 2024, 279, 135469. [Google Scholar] [CrossRef]
- Ko, J.-Y.; Lee, J.-H.; Sim, H.-H.; Kim, H.J.; Oak, M.-H. Isolation and Activity Evaluation of Peptides with Anti-hypertensive Activity from Commercial Enzymatic Flounder Fish Hydrolysate. Nat. Prod. Sci. 2023, 29, 337–348. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, D.; Yang, Z.; Gao, X.; Dang, Y. Angiotensin I-Converting enzyme (ACE) inhibitory and dipeptidyl Peptidase-4 (DPP-IV) inhibitory activity of umami peptides from Ruditapes philippinarum. LWT 2021, 144, 111265. [Google Scholar] [CrossRef]
- Heo, S.-Y.; Kang, N.; Kim, E.-A.; Kim, J.; Lee, S.-H.; Ahn, G.; Oh, J.H.; Shin, A.Y.; Kim, D.; Heo, S.-J. Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki. Mar. Drugs 2023, 21, 458. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, Y.; Zheng, H.; Xiang, X.; Xu, L. A novel angiotensin-I-converting enzyme inhibitory peptide from oyster: Simulated gastro-intestinal digestion, molecular docking, inhibition kinetics and antihypertensive effects in rats. Front. Nutr. 2022, 9, 981163. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shu, T.; Wang, K.; Yuan, Z.; Zhang, X. Roles of Marine Shellfish Proteins with High Contents of Angiotensin-Converting Enzyme (ACE)-Binding Peptides in Nutrition Support for Hypertension. Appl. Sci. 2023, 13, 4654. [Google Scholar] [CrossRef]
- Wu, C.; Yin, Z.; Wang, Y.; Chen, X.; Li, B.; Wang, Q.; Yao, L.; Zhang, Z.; Liu, X.; Zhang, R. The first bioactive (angiotensin-converting enzyme-inhibitory) peptide isolated from pearl matrix protein. Heliyon 2024, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lin, H.; Qin, X.; Gao, J.; Chen, Z.; Cao, W.; Zheng, H.; Xie, S. In Silico Identification and Molecular Mechanism of Novel Tyrosinase Inhibitory Peptides Derived from Nacre of Pinctada martensii. Mar. Drugs 2024, 22, 359. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Chen, X.; Li, B.; Zhang, Z.; Yao, L.; Liu, X.; Zhang, R. A Natural Bioactive Peptide from Pinctada fucata Pearls Can Be Used as a Potential Inhibitor of the Interaction between SARS-CoV-2 and ACE2 against COVID-19. Int. J. Mol. Sci. 2024, 25, 7902. [Google Scholar] [CrossRef]
- Shi, J.; Su, R.-q.; Zhang, W.-t.; Chen, J. Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein. J. Food Sci. Technol. 2020, 57, 3927–3934. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Ko, S.-C.; Kim, H.-S.; Yang, H.-W.; Ahn, G.; Lee, S.-C.; Lee, T.-G.; Lee, J.-S.; Jeon, Y.-J. Structural evidence for antihypertensive effect of an antioxidant peptide purified from the edible marine animal Styela clava. J. Med. Food 2020, 23, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Shi, W.; Liu, S.; Chen, X.; Pan, N.; Wang, X.; Su, Y.; Liu, Z. Targeted Affinity Purification and Mechanism of Action of Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides from Sea Cucumber Gonads. Mar. Drugs 2024, 22, 90. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Han, Q.; Koyama, T.; Ishizaki, S. Preparation, purification and characterization of antibacterial and ACE inhibitory peptides from head protein hydrolysate of Kuruma shrimp, Marsupenaeus japonicus. Molecules 2023, 28, 894. [Google Scholar] [CrossRef] [PubMed]
- Purcell, D.; Packer, M.A.; Hayes, M. Angiotensin-I-converting enzyme inhibitory activity of protein hydrolysates generated from the macroalga Laminaria digitata (Hudson) JV Lamouroux 1813. Foods 2022, 11, 1792. [Google Scholar] [CrossRef]
- Suo, Q.; Yue, Y.; Wang, J.; Wu, N.; Geng, L.; Zhang, Q. Isolation, identification and in vivo antihypertensive effect of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Spirulina protein hydrolysate. Food Funct. 2022, 13, 9108–9118. [Google Scholar] [CrossRef]
- Windarto, S.; Lee, M.-C.; Nursyam, H.; Hsu, J.-L. First report of screening of novel angiotensin-I converting enzyme inhibitory peptides derived from the red alga Acrochaetium sp. Mar. Biotechnol. 2022, 24, 882–894. [Google Scholar] [CrossRef]
- Feng, X.; Liao, D.; Sun, L.; Wu, S.; Lan, P.; Wang, Z.; Li, C.; Zhou, Q.; Lu, Y.; Lan, X. Affinity purification of angiotensin converting enzyme inhibitory peptides from Wakame (Undaria pinnatifida) using immobilized ace on magnetic metal organic frameworks. Mar. Drugs 2021, 19, 177. [Google Scholar] [CrossRef] [PubMed]
- Purcell, D.; Packer, M.A.; Hayes, M. Identification of bioactive peptides from a Laminaria digitata protein hydrolysate using in silico and in vitro methods to identify angiotensin-1-converting enzyme (ACE-1) inhibitory peptides. Mar. Drugs 2023, 21, 90. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, Y.; He, H.; Zhou, W.; Li, M.; Lu, A.; Che, T.; Shen, S. Purification identification and function analysis of ACE inhibitory peptide from Ulva prolifera protein. Food Chem. 2023, 401, 134127. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Toji, K.; Katsukura, S.; Morikawa, R.; Uji, T.; Yasui, H.; Shimizu, T.; Kishimura, H. Characterization of ACE inhibitory peptides prepared from Pyropia pseudolinearis protein. Mar. Drugs 2021, 19, 200. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, X.; Sun, X.; Zhang, X.; Chen, X.; Xu, N. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis. Mar. Drugs 2019, 17, 179. [Google Scholar] [CrossRef]
- Cermeño, M.; Stack, J.; Tobin, P.R.; O’Keeffe, M.B.; Harnedy, P.A.; Stengel, D.B.; FitzGerald, R.J. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food Funct. 2019, 10, 3421–3429. [Google Scholar] [CrossRef]
- Joel, C.H.; Sutopo, C.C.; Prajitno, A.; Su, J.-H.; Hsu, J.-L. Screening of angiotensin-I converting enzyme inhibitory peptides derived from Caulerpa lentillifera. Molecules 2018, 23, 3005. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Cai, Q.-F.; Yoshida, A.; Sun, L.-C.; Liu, Y.-X.; Liu, G.-M.; Su, W.-J.; Cao, M.-J. Purification and characterization of two novel angiotensin I-converting enzyme inhibitory peptides derived from R-phycoerythrin of red algae (Bangia fusco-purpurea). Eur. Food Res. Technol. 2017, 243, 779–789. [Google Scholar] [CrossRef]
- Cao, D.; Lv, X.; Xu, X.; Yu, H.; Sun, X.; Xu, N. Purification and identification of a novel ACE inhibitory peptide from marine alga Gracilariopsis lemaneiformis protein hydrolysate. Eur. Food Res. Technol. 2017, 243, 1829–1837. [Google Scholar] [CrossRef]
- Pan, S.; Wang, S.; Jing, L.; Yao, D. Purification and characterisation of a novel angiotensin-I converting enzyme (ACE)-inhibitory peptide derived from the enzymatic hydrolysate of Enteromorpha clathrata protein. Food Chem. 2016, 211, 423–430. [Google Scholar] [CrossRef]
- Furuta, T.; Miyabe, Y.; Yasui, H.; Kinoshita, Y.; Kishimura, H. Angiotensin I converting enzyme inhibitory peptides derived from phycobiliproteins of dulse Palmaria palmata. Mar. Drugs 2016, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, H.; Liu, J.; Gu, H.; Fu, C.; Zeb, A.; Che, T.; Shen, S. Preparation and Vasodilation Mechanism of Angiotensin-I-Converting Enzyme Inhibitory Peptide from Ulva prolifera Protein. Mar. Drugs 2024, 22, 398. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, K.L.; Mehta, A. Health benefits and pharmacological effects of Porphyra species. Plant Foods Hum. Nutr. 2019, 74, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tan, L.; Li, C.; Zhou, C.; Hong, P.; Sun, S.; Qian, Z.-J. Mechanism analysis of a novel angiotensin-I-converting enzyme inhibitory peptide from Isochrysis zhanjiangensis microalgae for suppressing vascular injury in human umbilical vein endothelial cells. J. Agric. Food Chem. 2020, 68, 4411–4423. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine peptides: Bioactivities and applications. Mar. Drugs 2015, 13, 4006–4043. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Malik, M.I.; Umar, T.; Ashraf, S.; Ahmad, A. A comprehensive review about bioactive peptides: Sources to future perspective. Int. J. Pept. Res. Ther. 2022, 28, 155. [Google Scholar] [CrossRef]
- Chourasia, R.; Chiring Phukon, L.; Abedin, M.M.; Padhi, S.; Singh, S.P.; Rai, A.K. Bioactive peptides in fermented foods and their application: A critical review. Syst. Microbiol. Biomanuf. 2023, 3, 88–109. [Google Scholar] [CrossRef]
- Jin, Q.H.; Peng, D.X.; Zheng, Z.J. Advances in extracting and understanding the bioactivities of marine organism peptides: A review. J. Food Process. Preserv. 2022, 46, e15602. [Google Scholar] [CrossRef]
- Poreba, M. Protease-activated prodrugs: Strategies, challenges, and future directions. FEBS J. 2020, 287, 1936–1969. [Google Scholar] [CrossRef]
- Ulug, S.K.; Jahandideh, F.; Wu, J. Novel technologies for the production of bioactive peptides. Trends Food Sci. Technol. 2021, 108, 27–39. [Google Scholar] [CrossRef]
- Cunha, S.A.; de Castro, R.; Coscueta, E.R.; Pintado, M. Hydrolysate from mussel Mytilus galloprovincialis meat: Enzymatic hydrolysis, optimization and bioactive properties. Molecules 2021, 26, 5228. [Google Scholar] [CrossRef]
- Mahgoub, S.; Alagawany, M.; Nader, M.; Omar, S.M.; Abd El-Hack, M.E.; Swelum, A.; Elnesr, S.S.; Khafaga, A.F.; Taha, A.E.; Farag, M.R. Recent development in bioactive peptides from plant and animal products and their impact on the human health. Food Rev. Int. 2023, 39, 511–536. [Google Scholar] [CrossRef]
- Ye, H.; Tao, X.; Zhang, W.; Chen, Y.; Yu, Q.; Xie, J. Food-derived bioactive peptides: Production, biological activities, opportunities and challenges. J. Future Foods 2022, 2, 294–306. [Google Scholar] [CrossRef]
- Phadke, G.G.; Rathod, N.B.; Ozogul, F.; Elavarasan, K.; Karthikeyan, M.; Shin, K.-H.; Kim, S.-K. Exploiting of secondary raw materials from fish processing industry as a source of bioactive peptide-rich protein hydrolysates. Mar. Drugs 2021, 19, 480. [Google Scholar] [CrossRef]
- Liu, P.; Lan, X.; Yaseen, M.; Wu, S.; Feng, X.; Zhou, L.; Sun, J.; Liao, A.; Liao, D.; Sun, L. Purification, characterization and evaluation of inhibitory mechanism of ACE inhibitory peptides from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate. Mar. Drugs 2019, 17, 463. [Google Scholar] [CrossRef] [PubMed]
- Mutalipassi, M.; Esposito, R.; Ruocco, N.; Viel, T.; Costantini, M.; Zupo, V. Bioactive compounds of nutraceutical value from fishery and aquaculture discards. Foods 2021, 10, 1495. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Tian, E.; Liu, Z.; Zhou, C.; Yang, P.; Tian, K.; Liao, W.; Li, J.; Ren, C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front. Pharmacol. 2022, 13, 968104. [Google Scholar] [CrossRef] [PubMed]
- Shafie, M.H.; Yap, P.G.; Gan, C.-Y. Bioactive Peptides and Polysaccharides: Setting a New Trend in Replacing Conventional Angiotensin-Converting Enzyme Inhibitors. In Natural Products as Enzyme Inhibitors: An Industrial Perspective; Springer: Berlin/Heidelberg, Germany, 2022; pp. 169–203. [Google Scholar]
- Caballero, J. Considerations for docking of selective angiotensin-converting enzyme inhibitors. Molecules 2020, 25, 295. [Google Scholar] [CrossRef]
- Yousafi, Q.; Batool, J.; Khan, M.S.; Perveen, T.; Sajid, M.W.; Hussain, A.; Mehmood, A.; Saleem, S. In Silico Evaluation of Food Derived Bioactive Peptides as Inhibitors of Angiotensin Converting Enzyme (ACE). Int. J. Pept. Res. Ther. 2021, 27, 341–349. [Google Scholar] [CrossRef]
- Chai, T.-T.; Wong, C.C.-C.; Sabri, M.Z.; Wong, F.-C. Seafood paramyosins as sources of anti-angiotensin-converting-enzyme and anti-dipeptidyl-peptidase peptides after gastrointestinal digestion: A cheminformatic investigation. Molecules 2022, 27, 3864. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, Y.; Zhang, G. Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives. Food Chem. 2024, 460, 140413. [Google Scholar] [CrossRef]
- Wu, R.; Wu, C.; Liu, D.; Yang, X.; Huang, J.; Zhang, J.; Liao, B.; He, H.; Li, H. Overview of antioxidant peptides derived from marine resources: The sources, characteristic, purification, and evaluation methods. Appl. Biochem. Biotechnol. 2015, 176, 1815–1833. [Google Scholar] [CrossRef]
- Shaik, M.I.; Sarbon, N.M. A review on purification and characterization of anti-proliferative peptides derived from fish protein hydrolysate. Food Rev. Int. 2022, 38, 1389–1409. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, preparation, and purification of marine bioactive peptides. BioMed Res. Int. 2017, 2017, 9746720. [Google Scholar] [CrossRef]
- Tao, W.; Wang, G.; Wei, J. The role of chitosan oligosaccharide in metabolic syndrome: A review of possible mechanisms. Mar. Drugs 2021, 19, 501. [Google Scholar] [CrossRef]
- Jama, H.A.; Muralitharan, R.R.; Xu, C.; O’Donnell, J.A.; Bertagnolli, M.; Broughton, B.R.; Head, G.A.; Marques, F.Z. Rodent models of hypertension. Br. J. Pharmacol. 2022, 179, 918–937. [Google Scholar] [CrossRef]
- Irigoyen, M.C.; Fetter, C.; De Angelis, K. Advances on the Experimental Research in Resistant Hypertension. Curr. Hypertens. Rep. 2024, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, B.; Yan, M.; Hou, H.; Zhuang, Y. Antihypertensive effect in vivo of QAGLSPVR and its transepithelial transport through the Caco-2 cell monolayer. Mar. Drugs 2019, 17, 288. [Google Scholar] [CrossRef]
- Ko, S.-C.; Jung, W.-K.; Lee, S.-H.; Lee, D.H.; Jeon, Y.-J. Antihypertensive effect of an enzymatic hydrolysate from Styela clava flesh tissue in type 2 diabetic patients with hypertension. Nutr. Res. Pract. 2017, 11, 396–401. [Google Scholar] [CrossRef]
- Fujita, H.; Yamagami, T.; Ohshima, K. Effects of an ACE-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects. Nutr. Res. 2001, 21, 1149–1158. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Paulionis, L.; Pelipyagina, T.; Evans, M. A Randomized, Double-Blind, Placebo-Controlled, Multicentre Trial of the Effects of a Shrimp Protein Hydrolysate on Blood Pressure. Int. J. Hypertens. 2019, 2019, 2345042. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 2021, 11, 2416–2448. [Google Scholar] [CrossRef]
- Pei, J.; Gao, X.; Pan, D.; Hua, Y.; He, J.; Liu, Z.; Dang, Y. Advances in the stability challenges of bioactive peptides and improvement strategies. Curr. Res. Food Sci. 2022, 5, 2162–2170. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, J.; Chen, J.; Yu, H.; Zheng, Y.; Zhao, J.; Zhu, J. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.-Y.; Li, H.-J.; Li, Q.-Y.; Wu, Y.-C. Application of marine natural products in drug research. Bioorg. Med. Chem. 2021, 35, 116058. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef] [PubMed]
- Akintola, C.P.; Finnegan, D.; Hunt, N.; Lalor, R.; O’Neill, S.; Loscher, C. Nutrition Nutraceuticals: A Proactive Approach for Healthcare. In Advances in Nutraceuticals and Functional Foods; Apple Academic Press: Waretown, NJ, USA, 2022; pp. 123–172. [Google Scholar]
- Du, Z.; Li, Y. Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. J. Agric. Food Res. 2022, 9, 100353. [Google Scholar] [CrossRef]
- De Luca, C.; Lievore, G.; Bozza, D.; Buratti, A.; Cavazzini, A.; Ricci, A.; Macis, M.; Cabri, W.; Felletti, S.; Catani, M. Downstream processing of therapeutic peptides by means of preparative liquid chromatography. Molecules 2021, 26, 4688. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 2020, 19, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ryu, B.; Zhang, Y.; Liang, P.; Li, C.; Zhou, C.; Yang, P.; Hong, P.; Qian, Z.J. Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: Inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J. Sci. Food Agric. 2020, 100, 315–324. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; San, S. Efficacy of a novel ACE-inhibitory peptide from Sargassum maclurei in hypertension and reduction of intracellular endothelin-1. Nutrients 2020, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Rahmdel, M.; Cho, S.M.; Jeon, Y.-J.; Lee, D.H. A flounder fish peptide shows anti-hypertensive effects by suppressing the renin-angiotensin-aldosterone system and Endothelin-1. Protein Pept. Lett. 2021, 28, 831–840. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, W.; Liu, J.; Zou, S.; Yin, D.; Lyu, C.; Yu, J.; Wei, Y. Bioactive Peptides from Ruditapes philippinarum Attenuate Hypertension and Cardiorenal Damage in Deoxycorticosterone Acetate–Salt Hypertensive Rats. Molecules 2023, 28, 7610. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Chen, C.-A.; Tsai, J.-S.; Chen, G.-W. Preparation and identification of novel antihypertensive peptides from the in vitro gastrointestinal digestion of marine cobia skin hydrolysates. Nutrients 2019, 11, 1351. [Google Scholar] [CrossRef] [PubMed]
- Balti, R.; Bougatef, A.; Sila, A.; Guillochon, D.; Dhulster, P.; Nedjar-Arroume, N. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chem. 2015, 170, 519–525. [Google Scholar] [CrossRef]
- Song, Y.; Yu, J.; Song, J.; Wang, S.; Cao, T.; Liu, Z.; Gao, X.; Wei, Y. The antihypertensive effect and mechanisms of bioactive peptides from Ruditapes philippinarum fermented with Bacillus natto in spontaneously hypertensive rats. J. Funct. Foods 2021, 79, 104411. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, Y.; Wang, J.; Wu, S.; Geng, L.; Sui, Z.; Zhang, Q. Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in spontaneously hypertensive rats (SHRs). Mar. Drugs 2018, 16, 299. [Google Scholar] [CrossRef] [PubMed]
Organism Type | Specific Species | Part Used | Extraction Method | Peptide Sequence | IC50 | Reference |
---|---|---|---|---|---|---|
Fish | Monkfish (Lophius litulon) | Swim bladders | Double-enzyme system (Alcalase + Neutrase) | SEGPK | 0.63 mg/mL | [52] |
Fish | Yellowbelly pufferfish (Takifugu flavidus) | Skin, meat | Enzymatic hydrolysis (Alcalase, pepsin, and trypsin) | PPLLFAAL | 28 μmol/L | [53] |
Fish | Shortfin scad (Decapterus macrosoma) | Bones, skins, and tails | Enzymatic hydrolysis (Alcalase) | RGVGPVPAA | 0.20 mg/mL | [36] |
Fish | Skipjack tuna (Katsuwonus pelamis) | Dark muscle | Enzymatic hydrolysis (Protease) | FPPDVA | 87.11 μmol/L | [54] |
Fish | Alaska pollock (Gadus chalcogrammus) | Skins | Enzymatic hydrolysis (Alcalase, trypsin) | GPLGVP | 105.8 μmol/L | [55] |
Fish | Skipjack tuna (Katsuwonus pelamis) | Blood | Enzymatic hydrolysates (Neutrase) | - | 0.19 mg/mL | [56] |
Fish | Atlantic salmon (Salmo salar L.) | Skin | Enzymatic hydrolysis (Alcalase) | GR | 0.73 mg/mL | [57] |
Fish | Mackerel (Scomber japonicus) | Muscle | Enzymatic hydrolysis (Papain) | PLITT | 48.78 μmol/L | [58] |
Fish | Large yellow croaker (Larimichthys crocea) | Muscles of the back | Enzymatic hydrolysis (Papain, trypsin) | IPYADFK | 0.64 μmol/L | [59] |
Fish | Yellowbelly pufferfish (Takifugu flavidus) | Skin | Enzymatic hydrolysis (Alcalase) | TLRFALHGME | 93.5 μmol/L | [60] |
Fish | Redwing sea robin (Lepidotrigla microptera) | Muscle | Enzymatic hydrolysis (Alcalase) | DLTAGLLE | 0.13 mg/mL | [61] |
Fish | Skipjack tuna (Katsuwonus pelamis) | - | Enzymatic hydrolysis (Alcalase) | ICY | 0.48 mg/mL | [62] |
Fish | Large yellow croaker (Larimichthys crocea) | - | - | WAR | 31.2 μmol/L | [63] |
Fish | Atlantic salmon (Salmo salar) | Bones | Enzymatic hydrolysis (Trypsin) | FCLYELAR | 31.63 μmol/L | [43] |
Fish | Cutlassfish (Trichiurus lepturus) | Muscle | Enzymatic hydrolysis (Pepsin) | FSGGE | 0.033 mg/mL | [64] |
Fish | Skipjack tuna (Katsuwonus pelamis) | Roe | Enzymatic hydrolysis (Flavorzyme) | YSHM | 0.49 mg/mL | [42] |
Fish | Nile tilapia (Oreochroma niloticus) | Skin | Enzymatic hydrolysis (Alcalase) | VGLFPSRSF | 61.43 μmol/L | [65] |
Fish | Pacific saury (Cololabis saira) | Muscle | Enzymatic hydrolysis (Neutrase) | LEPWR | 99.5 μmol/L | [66] |
Fish | Large head hairtail (Trichiurus lepturus) | - | Enzymatic hydrolysis (Alcalase) | QGPIGPR | 81 μmol/L | [67] |
Fish | Nile tilapia (Oreochroma niloticus) | Skin | Enzymatic hydrolysis (Purified from the hepatopancreas of Pacific white shrimp (Litopenaeus vannamei)) | ARTCR | 77.0 μmol/L | [68] |
Fish | Skipjack tuna (Katsuwonus pelamis) | Muscle | Enzymatic hydrolysis (Alcalase) | SP | 0.06 mg/mL | [69] |
Fish | Mozambique tilapia (Oreochromis mossambicus) | Skin | Enzymatic hydrolysis (Papain) | GPLGAL | 117.20 μmol/L | [70] |
Fish | Big-belly seahorse (Hippocampus abdominalis) | - | Enzymatic hydrolysis (Protease) | CNVPLSP | 0.088 mg/mL | [71] |
Fish | Skipjack tuna (Katsuwonus pelamis) | Dark muscles | Enzymatic hydrolysis (Neutrase) | MKKS | 0.269 mg/mL | [72] |
Fish | European pilchard (Sardina pilchardus) | - | Enzymatic hydrolysis (Alcalase) | KFL | 0.66 mg/mL | [73] |
Fish | Stone fish (Actinopyga lecanora) | Muscle | Enzymatic hydrolysis (Bromelain) | ALGPQFY | 0.012 mmol/L | [74] |
Fish | Tuna (Thunnus thynnus) | Muscle | Enzymatic hydrolysis (Neutrase, alkaline) | LTGCP | 64.3 μmol/L | [75] |
Fish | Flounder (Paralichthys olivaceus) | Muscle | Enzymatic hydrolysis (Flavourzyme, kojienzyme, and protamex) | VFSGWAA | 27.50 μg/mL | [76] |
Mollusk | Manila clam (Ruditapes philippinarum) | Muscle | - | TYLPVH | 1.37 μmol/L | [77] |
Mollusk | Deep-sea mussel (Gigantidas vrijenhoeki) | Muscle | Enzymatic hydrolysis (Pepsin) | KLLWNGKM | 0.007 μmol/L | [78] |
Mollusk | Oyster (Crassostrea gigas) | Muscle | Enzymatic hydrolysates (In vitro gastrointestinal digestion) | AEYLCEAC | 4.287 mmol/L | [79] |
Mollusk | Razor clam (Siliqua patula) | - | Enzymatic hydrolysis | SCCGY | 0.009 mmol/L | [80] |
Mollusk | Akoya pearl oyster (Pinctada fucata) | Pearl | Enzymatic hydrolysis (Trypsin) | KKCHFWPFPW | 4.17 μmol/L | [81] |
Mollusk | Akoya pearl oyster (Pinctada martensii) | Pearl | Enzymatic hydrolysis (Pineapple protease, neutral protease) | AHYYD | 2.102 mmol/L | [82] |
Mollusk | Akoya pearl oyster (Pinctada fucata) | Pearl | - | KKCH | 413.2 μmol/L | [83] |
Sea horse | Flat-faced seahorse (Hippocampus trimaculatus) | - | Enzymatic hydrolysis (Alcalase) | PAGPRGPA | 7.90 μmol/L | [84] |
Tunicate | Leathery sea squirt (Styela clava) | - | Enzymatic hydrolysis (Pepsin) | LWHTH | 16.42 μmol/L | [85] |
Sea cucumber | Japanese spiky sea cucumber (Apostichopus japonicus) | Gonads | Enzymatic hydrolysis (Alcalase) | DDQIHIF | 333.5 μmol/L | [86] |
Crustacean | Kuruma Shrimp (Marsupenaeus japonicus) | Heads | Enzymatic hydrolysis (Papain) | ARL/I | 125.58 μmol/L | [87] |
Algae | Hudson (Laminaria digitata) | - | Enzymatic hydrolysis (Viscozyme) | - | 590 μg/mL | [88] |
Algae | Spirulina sp. | - | Enzymatic hydrolysis (Protease k) | TVLYEH | 2.88 μmol/L | [89] |
Algae | Acrochaetium sp. | - | Enzymatic hydrolysis | VGGSDLQAL | 433.1 μmol/L | [90] |
Algae | Wakame (Undaria pinnatifida) | - | Enzymatic hydrolysis (Bromelain) | KNFL | 0.12 mg/mL | [91] |
Algae | Oarweed (Laminaria digitata) | - | Enzymatic hydrolysis (Viscozyme, alcalase) | YIGNNPAKGGLF | 133.1 µg/mL | [92] |
Algae | Branched string lettuce (Ulva prolifera) | - | Enzymatic hydrolysis (Alcalase, papain) | DIGGL | 10.32 μmol/L | [93] |
Algae | Pyropia pseudolinearis | Leaves | Enzymatic hydrolysis (Thermolysin) | LRM | 0.15 μmol/L | [94] |
Algae | Sea lettuce (Ulva intestinalis) | - | Enzymatic hydrolysis (Trypsin) | FGMPLDR | 219.35 μmol/L | [95] |
Algae | Purple laver (Porphyra dioica) | - | Enzymatic hydrolysis (Alcalase flavourzyme) | TYIA | 89.7 μmol/L | [96] |
Algae | Sea grapes (Caulerpa lentillifera) | - | Enzymatic hydrolysis (Thermolysin) | FDGIP | 58.89 μmo/L | [97] |
Algae | Bangia fuscopurpurea | - | Enzymatic hydrolysis (Trypsin, pepsin) | ALLAGDPSVLEDR | 57.2 μg/mL | [98] |
Algae | Gracilariopsis lemaneiformis | - | Enzymatic hydrolysis (Trypsin) | QVEY | 474.36 μmol/L | [99] |
Algae | Enteromorpha clathrata | - | Enzymatic hydrolysis (Alcalase) | PAFG | 0.014 mg/mL | [100] |
Algae | Palmaria palmata | - | Enzymatic hydrolysis (Thermolysin) | LRY | 0.01 mg/mL | [101] |
Algae | Ulva prolifera | - | Enzymatic hydrolysis (Protease) | KAF | 0.63 μmol/L | [102] |
Algae | Pyropia yezoensis | - | Enzymatic hydrolysis (Pepsin) | AKYSY | 1.52 μmol/L | [103] |
Microalgae | Isochrysis zhanjiangensis | - | Enzymatic hydrolysates (In vitro gastrointestinal digestion) | FEIHCC | 61.38 μmol/L | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, D.-M.; Khan, F.; Park, S.-K.; Ko, S.-C.; Kim, K.W.; Yang, D.; Kim, J.-Y.; Oh, G.-W.; Choi, G.; Lee, D.-S.; et al. From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides—Mechanisms and Applications. Mar. Drugs 2024, 22, 449. https://doi.org/10.3390/md22100449
Jo D-M, Khan F, Park S-K, Ko S-C, Kim KW, Yang D, Kim J-Y, Oh G-W, Choi G, Lee D-S, et al. From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides—Mechanisms and Applications. Marine Drugs. 2024; 22(10):449. https://doi.org/10.3390/md22100449
Chicago/Turabian StyleJo, Du-Min, Fazlurrahman Khan, Seul-Ki Park, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Ji-Yul Kim, Gun-Woo Oh, Grace Choi, Dae-Sung Lee, and et al. 2024. "From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides—Mechanisms and Applications" Marine Drugs 22, no. 10: 449. https://doi.org/10.3390/md22100449
APA StyleJo, D. -M., Khan, F., Park, S. -K., Ko, S. -C., Kim, K. W., Yang, D., Kim, J. -Y., Oh, G. -W., Choi, G., Lee, D. -S., & Kim, Y. -M. (2024). From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides—Mechanisms and Applications. Marine Drugs, 22(10), 449. https://doi.org/10.3390/md22100449