Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Authors = Eugenio Cozzolino ORCID = 0000-0002-5158-4072

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2988 KiB  
Article
Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions
by Alessio Vincenzo Tallarita, Rachael Simister, Lorenzo Vecchietti, Eugenio Cozzolino, Vasile Stoleru, Otilia Cristina Murariu, Roberto Maiello, Giuseppe Cozzolino, Stefania De Pascale and Gianluca Caruso
Appl. Sci. 2025, 15(15), 8620; https://doi.org/10.3390/app15158620 - 4 Aug 2025
Viewed by 81
Abstract
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant [...] Read more.
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant formulations (Cystoseira tamariscifolia L. extract; a commercial legume-derived protein hydrolysate, “Dynamic”; and Spirulina platensis extract) plus an untreated control, and three crop cycles (autumn, autumn–winter, and winter) on leaf yield and dry matter, organic acids, colorimetric parameters, hydrophilic and lipophilic antioxidant activities, nitrate concentration, nitrogen use efficiency, and mineral composition, using a split plot design with three replicates. Protein hydrolysate significantly enhanced yield and nitrogen use efficiency in Mars (+26%), Naples (+25.6%), Tricia (+25%), and Olivetta (+26%) compared to the control, while Spirulina platensis increased the mentioned parameters only in Venice (+36.2%). Nitrate accumulation was reduced by biostimulant application just in Venice, indicating genotype-dependent nitrogen metabolism responses. The findings of the present research demonstrate that the biostimulant efficacy in perennial wall rocket is mainly ruled by genotypic factors, and the appropriate combinations between the two mentioned experimental factors allow for optimization of leaf yield and quality while maintaining nitrate concentration under the regulation thresholds. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

21 pages, 4695 KiB  
Article
From Water Buffalo (Bubalus bubalis) Manure to Vermicompost: Testing a Sustainable Approach for Agriculture
by Giovanna Marta Fusco, Ida Di Mola, Mauro Mori, Eugenio Cozzolino, Biagio Morrone, Fulvio Trasacco and Petronia Carillo
Sustainability 2025, 17(10), 4253; https://doi.org/10.3390/su17104253 - 8 May 2025
Viewed by 708
Abstract
The application of organic amendments in agriculture has gained increasing attention as a sustainable approach to improving soil fertility and crop productivity. This study assessed the effects of vermicompost derived from water buffalo (Bubalus bubalis) manure on the yield and biochemical [...] Read more.
The application of organic amendments in agriculture has gained increasing attention as a sustainable approach to improving soil fertility and crop productivity. This study assessed the effects of vermicompost derived from water buffalo (Bubalus bubalis) manure on the yield and biochemical quality of cauliflower cultivated in soil types typical of the Campania region: loam and clay. Three fertilization treatments were tested, an unfertilized control, vermicompost (140 kg N ha−1), and mineral fertilizer (MIN), at the same nitrogen rate. The results showed that vermicompost more significantly improved plant growth compared to the unfertilized control, particularly in loam soil, where the biomass and the leaf number increased by 160% and 335%, respectively. In clay soil, vermicompost enhanced nutrient availability, leading to a 159% biomass increase relative to the control. While mineral fertilization resulted in the highest yields, vermicompost improved the antioxidant capacity and influenced the amino acid composition, particularly in clay soil, where it enhanced the total amino acid content by 35% over that of the control. Additionally, vermicompost increased the quantity of soil organic matter and moderated the oxidative stress responses, suggesting long-term benefits for soil health. These findings highlight the potential of vermicompost as an effective and sustainable soil amendment, particularly in regions with intensive livestock farming and nitrate-sensitive environments. Further research is needed to optimize its integration with conventional fertilization strategies to maximize the agronomic and environmental benefits. Full article
(This article belongs to the Special Issue Sustainable Agricultural and Rural Development)
Show Figures

Graphical abstract

12 pages, 10593 KiB  
Article
Organic Fertilization and Biostimulant Application to Improve Yield and Quality of Eggplant While Reducing the Environmental Impact
by Luigi Giuseppe Duri, Roberta Paradiso, Ida Di Mola, Eugenio Cozzolino, Lucia Ottaiano, Roberta Marra and Mauro Mori
Plants 2025, 14(6), 962; https://doi.org/10.3390/plants14060962 - 19 Mar 2025
Viewed by 849
Abstract
Environmental sustainability is a crucial issue in modern agriculture and special attention needs to be paid to soil health preservation. Eggplant (Solanum melongena L.) cultivation implies the supply of relevant quantities of chemical fertilizers, since the crop has high nutrient requirements. This [...] Read more.
Environmental sustainability is a crucial issue in modern agriculture and special attention needs to be paid to soil health preservation. Eggplant (Solanum melongena L.) cultivation implies the supply of relevant quantities of chemical fertilizers, since the crop has high nutrient requirements. This study investigated the combined effects of two common organic amendments—compost and digestate—and two types of biostimulant—a plant-based product and a microbe-based product—on fruit production and quality of eggplant, to highlight the potential synergistic effects of fertilization and biostimulation. The experiment was carried out in a Mediterranean greenhouse in the winter/spring period, assessing early and total marketable yield and fruit qualitative traits (firmness, color, nitrogen, ascorbic acid, carotenoid and phenol content, and antioxidant activity). Results showed that the fertilization strategy significantly influenced plant productivity, with digestate promoting the early fruitification and mineral fertilizers resulting in a higher total yield. Biostimulants, particularly the microbial type, improved the fruit quality in terms of carotenoid content and antioxidant activity. These findings highlight the potential benefits of combining organic amendments with biostimulants in eggplant cultivation, enhancing the economic value of the product through the increase in the early production and fruit nutraceutical value while realizing sustainable practices. Full article
(This article belongs to the Special Issue Strategies for Nutrient Use Efficiency Improvement in Plants)
Show Figures

Figure 1

14 pages, 1997 KiB  
Article
Greenhouse Gas Emissions and Yield of Durum Wheat Under Organic and Conventional Fertilization in Three Texture Classes
by Lucia Ottaiano, Ida Di Mola, Luca Vitale, Eugenio Cozzolino, Maria Eleonora Pelosi, Giuseppe Maglione and Mauro Mori
Agronomy 2025, 15(3), 702; https://doi.org/10.3390/agronomy15030702 - 13 Mar 2025
Viewed by 662
Abstract
Durum wheat (Triticum turgidum subsp. durum), though less widespread than soft wheat, is crucial in Mediterranean countries. Agriculture significantly contributes to global climate change by emitting greenhouse gases, particularly nitrous oxide, which accounts for about 6% of global warming because of [...] Read more.
Durum wheat (Triticum turgidum subsp. durum), though less widespread than soft wheat, is crucial in Mediterranean countries. Agriculture significantly contributes to global climate change by emitting greenhouse gases, particularly nitrous oxide, which accounts for about 6% of global warming because of its long atmospheric lifetime and heat-trapping capacity. Soil fertility is influenced by the interplay of its physical, chemical, and biological properties, which, in turn, affect the production of nitrous oxide (N2O), a potent greenhouse gas. The yield-scaled N2O emission index, which measures N2O emissions relative to crop yield, is used to develop sustainable agricultural strategies. Our study aimed to compare the effects of organic vs. conventional fertilization on durum wheat yield and N2O emissions across three soils differing in texture. The study was carried out from autumn 2020 to spring 2021 in Portici (Naples, Italy). A factorial combination was applied, involving three different texture classes (clay, sand, and loam) and four fertilization strategies (no fertilization, compost, digestate, and mineral fertilization). Our results highlight that in sandy soil, wheat yield reached its highest values, particularly under digestate fertilization (+74.5%) and, interestingly, with lower cumulative N2O emissions (−16%). However, in sandy soil, the protein content of kernels was lower, similar to that recorded for the fertilization with digestate. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

28 pages, 3091 KiB  
Article
Crop Performance and Photochemical Processes Under a UV-to-Red Spectral Shifting Greenhouse: A Study on Aubergine and Strawberry
by Stefano Conti, Ida Di Mola, Miloš Barták, Eugenio Cozzolino, Giuseppe Melchionna, Pasquale Mormile, Lucia Ottaiano, Roberta Paradiso, Massimo Rippa, Antonino Testa and Mauro Mori
Agriculture 2025, 15(6), 569; https://doi.org/10.3390/agriculture15060569 - 7 Mar 2025
Cited by 1 | Viewed by 1024
Abstract
Light quality is a fundamental factor in greenhouses, since different light wavelengths affect plant photosynthesis and photomorphogenesis differently, they thus affect crop growth and productivity. The aim of this study was to evaluate the effect of an experimental greenhouse cover film with UV-to-Red [...] Read more.
Light quality is a fundamental factor in greenhouses, since different light wavelengths affect plant photosynthesis and photomorphogenesis differently, they thus affect crop growth and productivity. The aim of this study was to evaluate the effect of an experimental greenhouse cover film with UV-to-Red spectral shifting properties on photosynthesis, plant growth, fruit yield, and the quality of two crops spanning over a year-long cultural cycle: aubergines (Solanum melongena L.), as a spring–summer crop, followed by strawberries (Fragaria × ananassa Duch.), as an autumn–spring crop. Trials were carried out in a multispan greenhouse where two sectors were covered, each one with a different light diffusing polyethylene film: one sector was covered with a UV-to-Red photoluminescent film, doped with a blend of rare-earth elements partially converting the UV solar radiation into Red wavelengths, while a light diffusing polyethylene film was used as the control. At the physiological level, spectral shifting affected the chlorophyll fluorescence parameters related to the photochemistry of photosynthesis, which were found to be positively related to crop yield. Moreover, differential analysis of the fast Chlorophyll a fluorescence transients (or OJIP kinetics) showed that spectral shifting affected different steps of the plant photochemical metabolism. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

19 pages, 1156 KiB  
Article
Effects of Selenium/Iodine Foliar Application and Seasonal Conditions on Yield and Quality of Perennial Wall Rocket
by Alessio Vincenzo Tallarita, Nadezhda Golubkina, Stefania De Pascale, Agnieszka Sękara, Robert Pokluda, Otilia Cristina Murariu, Eugenio Cozzolino, Vincenzo Cenvinzo and Gianluca Caruso
Horticulturae 2025, 11(2), 211; https://doi.org/10.3390/horticulturae11020211 - 17 Feb 2025
Cited by 1 | Viewed by 830
Abstract
The biofortification of leafy vegetables with selenium (Se) and iodine (I) provides the basis for the Se/I status optimization and preservation of human health. The effect of foliar Se, I, and Se + I supply in three different crop cycles (autumn, autumn–winter, and [...] Read more.
The biofortification of leafy vegetables with selenium (Se) and iodine (I) provides the basis for the Se/I status optimization and preservation of human health. The effect of foliar Se, I, and Se + I supply in three different crop cycles (autumn, autumn–winter, and winter) on yield, quality, and mineral composition of wall rocket leaves was investigated using biochemical and ICP-MS methods of analysis. Joint foliar supply with selenate/iodide increased yield, antioxidant activity, total phenolic, ascorbic acid, and protein levels by 1.63, 1.24, 1.22, 1.25, and 1.50 times, respectively, and the content of Ca, Mg, P, K, Fe, Cu, and Zn by 1.27, 1.24, 1.35, 1.46, 3.67, 2.76, and 1.44 times, respectively. High correlations between Se, antioxidants, P, Mg, and Ca (r > 0.80) as well as between yield and K/protein content were recorded. Despite a significant decrease in yield, protein, and K, Fe, Cu, and Mn contents in the third crop cycle, compared to the first one, 50 g of wall rocket biofortified with Se/I may provide up to 100% of the Se adequate consumption level, 34.3% of I, 9% of K, 24% of Fe, and 17.7% Ca. The results of the present research confirm the high efficiency of Se/I supply to produce D. tenuifolia leaves as a new functional food. Full article
Show Figures

Figure 1

25 pages, 3661 KiB  
Article
The Effect of Eco-Friendly/Sustainable Agricultural Practices (Legume Green Manure and Compost Soil Amendment) on a Tobacco Crop Grown Under Deficit Irrigation
by Maria Isabella Sifola, Linda Carrino, Eugenio Cozzolino, Mario Palladino, Mariarosaria Sicignano, Daniele Todisco and Luisa del Piano
Sustainability 2025, 17(2), 769; https://doi.org/10.3390/su17020769 - 19 Jan 2025
Viewed by 1313
Abstract
A field experiment was conducted in 2018 at Marciano della Chiana (Arezzo, AR, Central Italy) with the main aim of investigating the effect of soil amendment with organic fraction municipal solid waste (OFMSW) compost and legume green manuring (Vicia villosa Roth, cv. [...] Read more.
A field experiment was conducted in 2018 at Marciano della Chiana (Arezzo, AR, Central Italy) with the main aim of investigating the effect of soil amendment with organic fraction municipal solid waste (OFMSW) compost and legume green manuring (Vicia villosa Roth, cv. villana) on a tobacco crop (dark fire-cured Kentucky type, cv. Foiano) grown under both full (100% of ETc) and deficit (70% of crop evapotranspiration, ETc) irrigation. The treatments are hereafter reported as GM (vetch green manuring) and NGM (no vetch green manuring), FI (full irrigation) and DI (deficit irrigation), and C (compost soil amendment) and NC (no compost soil amendment). The following parameters were calculated: (i) yield of the cured product (CLY, Mg ha−1) at a standard moisture content of 19%; (ii) irrigation water use efficiency (IWUE, kg of cured product m−3 seasonal irrigation volume), nitrogen (N) agronomic efficiency (NAE, kg of cured product kg−1 mineral N by synthetic fertilizers). Dry biomass accumulated in the stem and leaves (Mg ha−1) was also measured at 25, 57, 74, and 92 days after transplanting (DAT). The N recovery from the different plant parts (kg ha−1) was determined at 57 and 74 DAT. The C/N ratio, NO3-N (kg ha−1), the soil organic matter (SOM, %), and the soil contents of P2O5 and K2O (mg kg−1) were also analytically determined at 43, 74, and 116 DAT. Water retention measurements were carried out on soil samples at 116 DAT at 0–0.3 and 0.3–0.6 soil depths. Overall, there was a negative effect of both compost amendment and green manuring on yield. Green manuring and compost soil amendment improved soil chemical characteristics (i.e., SOM and C/N), as well as the plant N recovery, the IWUE, and the NAE. They increased the water retention capacity of the soil when the tobacco crop was deficit-irrigated and appeared to be promising practices to support the deficit irrigation strategy, contributing to reaching good agronomic results, although under the conditions of water shortage, and showing synergistic action in those conditions. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

14 pages, 249 KiB  
Article
Yield, Quality, Antioxidants, and Mineral Composition of Traditional Italian Storage Onion Cultivars in Response to Protein Hydrolysate and Microalgae Biostimulation
by Alessio Vincenzo Tallarita, Otilia Cristina Murariu, Tomas Kopta, Florin Daniel Lipșa, Leonardo Gomez, Eugenio Cozzolino, Pasquale Lombardi, Silvio Russo and Gianluca Caruso
Horticulturae 2025, 11(1), 25; https://doi.org/10.3390/horticulturae11010025 - 2 Jan 2025
Viewed by 971
Abstract
Increasing interest is being devoted to environmentally friendly strategies, such as the use of plant biostimulants, to enhance crop performance and concurrently ensure food security under the perspective of sustainable management. The effects of two biostimulant formulations (protein hydrolysate and spirulina) on four [...] Read more.
Increasing interest is being devoted to environmentally friendly strategies, such as the use of plant biostimulants, to enhance crop performance and concurrently ensure food security under the perspective of sustainable management. The effects of two biostimulant formulations (protein hydrolysate and spirulina) on four Italian traditional storage onion cultivars (Ramata di Montoro, Rossa di Tropea, Rocca Bruna, Dorata di Parma) were investigated in Naples province (southern Italy), in terms of yield, quality, shelf-life, bioactive compounds, and mineral composition. Ramata di Montoro showed the highest levels of yield (66.4 t ha−1) and vitamin C (31.5 mg g−1 d.w.) and the longest shelf-life (228 days). Significant increases in marketable yield were recorded under the applications of both protein hydrolysate (+15.5%) and spirulina (+12.4%) compared to the untreated control. The two biostimulant formulations significantly increased bulb shelf-life and the contents of polyphenols (201.4 mg gallic acid eq. 100 g−1 d.w. on average vs. 158.6 of the untreated control), vitamin C (26.8 mg g−1 d.w. on average vs. 22), and both lipophilic and hydrophilic antioxidant activities. These findings demonstrate the effectiveness of both protein hydrolysate and spirulina as sustainable tools for enhancing both yield and quality parameters within the frame of environmentally friendly farming management. Full article
14 pages, 1060 KiB  
Article
Impact of Salinity and Biostimulants on Cherry Tomato Yield and Quality
by Ida Di Mola, Lucia Ottaiano, Eugenio Cozzolino, Christophe El-Nakhel, Nunzio Fiorentino, Maria Eleonora Pelosi, Youssef Rouphael and Mauro Mori
Horticulturae 2024, 10(12), 1239; https://doi.org/10.3390/horticulturae10121239 - 22 Nov 2024
Cited by 2 | Viewed by 1381
Abstract
Salt stress causes several detrimental effects on the growth and production of cultivated plants; therefore, scientists have investigated several strategies to mitigate the adverse effects of salt stress, including the application of biostimulants. In our research, we tested four salinity levels of irrigation [...] Read more.
Salt stress causes several detrimental effects on the growth and production of cultivated plants; therefore, scientists have investigated several strategies to mitigate the adverse effects of salt stress, including the application of biostimulants. In our research, we tested four salinity levels of irrigation water (tap water and water at 3.0, 6.0, and 9.0 dS m−1, EC0, EC3, EC6, and EC9, respectively) and two biostimulant applications (untreated plants—Control and plants treated with an extract from seaweed Ascophyllum nodosum—Bio) on a cherry-type tomato. The marketable tomato yield linearly decreased with increasing salinity stress in both treated and untreated plants. However, biostimulant application boosted the production, on average, by 53.2%, significantly impacting only the Control and EC3 treatments. Regarding qualitative traits, no interaction between the factors was detected, except for color parameters. Nonetheless, salinity, particularly in the two less stressed treatments, led to an increase in total soluble solids, firmness, lipophilic antioxidant activity, and ascorbic acid, while the biostimulant improved plant biomass, total soluble solids, firmness, and hydrophilic antioxidant activity. In conclusion, the seaweed extract of Ascophyllum nodosum elicited a beneficial response in tomato plants subjected to low levels of salt stress, as well as in optimal irrigation condition. Full article
Show Figures

Figure 1

14 pages, 1076 KiB  
Article
Evaluation of Biodegradable Mulch Films on Melon Production and Quality under Mediterranean Field Conditions
by Mohamed Houssemeddine Sellami, Ida Di Mola, Lucia Ottaiano, Eugenio Cozzolino, Luisa del Piano and Mauro Mori
Agronomy 2024, 14(9), 2075; https://doi.org/10.3390/agronomy14092075 - 11 Sep 2024
Cited by 2 | Viewed by 1680
Abstract
This study examines the effects of biodegradable mulches on melon production and quality in a Mediterranean environment, specifically focusing on Mater-Bi and Ecovio in comparison to conventional (low-density polyethylene) LDPE mulch. Biodegradable mulches influenced soil temperature, with Mater-Bi maintaining higher maximum soil temperatures [...] Read more.
This study examines the effects of biodegradable mulches on melon production and quality in a Mediterranean environment, specifically focusing on Mater-Bi and Ecovio in comparison to conventional (low-density polyethylene) LDPE mulch. Biodegradable mulches influenced soil temperature, with Mater-Bi maintaining higher maximum soil temperatures conducive to crop growth, while Ecovio exhibited lower maximum temperatures beneficial in hot summer months. Results revealed a significant increase in melon yield with biodegradable mulches, with both Ecovio and Mater-Bi demonstrating higher yields at approximately 20.41 t ha−1, showing an improvement of 23.4% compared to LDPE. Although mulching did not impact the number, weight, or distal diameter of marketable fruits, it affected the apical diameter, with Ecovio-treated plants displaying an 8.4% larger apical diameter compared to the average of all treatments. Furthermore, mulching influenced fruit quality parameters such as consistency, pulp thickness, sugar content, and anti-oxidant activity, with Mater-Bi exhibiting the best performance. Since both Mater-Bi and Ecovio possess strengths and weaknesses, selecting the optimal mulch depends on the farmer’s specific objectives and local growing conditions. Overall, the study suggests that biodegradable mulches, particularly Ecovio, offer a sustainable alternative to traditional plastic films, contributing to environmental preservation and enhancing melon yield and quality in Mediterranean agricultural settings. Full article
(This article belongs to the Special Issue Sustainable Management in Water-Agricultural Nexus)
Show Figures

Figure 1

12 pages, 672 KiB  
Article
Biostimulant Effects of Algae Species, Arbuscular Mycorrhizal Fungi, and Their Combinations on Yield and Quality of Yellow Tomato Landrace Under Different Crop Cycles
by Soumaya Abidi, Alessio Vincenzo Tallarita, Eugenio Cozzolino, Vasile Stoleru, Otilia Cristina Murariu, Amina Abidi, Roberto Maiello, Vincenzo Cenvinzo, Pasquale Lombardi, Antonio Cuciniello, Lamia Hamrouni, Gianluca Caruso and Rafik Balti
Horticulturae 2024, 10(8), 876; https://doi.org/10.3390/horticulturae10080876 - 19 Aug 2024
Viewed by 1608
Abstract
Recent agricultural research has prioritized the development of environmentally friendly management strategies to ensure food security, among which the application of biostimulants such as brown algae extracts, arbuscular mycorrhizal fungi (AMF), and their combination are included. The experimental protocol was based on the [...] Read more.
Recent agricultural research has prioritized the development of environmentally friendly management strategies to ensure food security, among which the application of biostimulants such as brown algae extracts, arbuscular mycorrhizal fungi (AMF), and their combination are included. The experimental protocol was based on the factorial combination of two planting times (4 May and 1 June) and seven biostimulant treatments (three brown algae species, Cystoseria tamariscifolia—C.t.; Fucus vesiculosus—F.v.; Padina pavonica—P.p.; arbuscular mycorrhizal fungi—AMF; C.t. + AMF; F.v. + AMF; P.p. + AMF) plus an untreated control. The earlier transplant resulted in a higher yield, due to the higher number of fruits per plant, and a higher plant fresh and dry biomass. The treatments with P.p. and F.v. extracts and the combination P.p. + AMF led to the highest yields (56.7 t ha−1), mainly due to the highest fruit number per plant. The earlier planting time led to higher values of dry residue, soluble solids, firmness, and colour component ‘a’. The highest values of fruit dry residue were recorded under the F.v. and P.p. extracts, and the combinations F.v. + AMF and P.p. + AMF, the highest soluble solid content with P.p. treatment, and firmness under P.p. + AMF. The highest levels of ‘L’ and ‘a’ fruit colour components were obtained under the P.p. extract treatment, of ‘b’ upon the application of P.p. and F.v. extract, and AMF + P.p. and AMF + F.v. The later planting time led to significantly higher values of the antioxidant parameters, as did the application of the P.p. extract and P.p. + AMF. CAT activity was more intense corresponding to the later tomato crop cycle, P.p. extract, and AMF + P.p. Overall, our study highlights the potential of biostimulants, particularly brown algae extracts and their combination with AMF, to improve tomato yield, antioxidant properties, and biochemical activities. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

15 pages, 1842 KiB  
Article
Crop Management System Consisting of Biodegradable Mulching Film + Drip Irrigation Increases Yield and Quality of Flue-Cured Tobacco
by Maria Isabella Sifola, Eugenio Cozzolino, Anna Ciancolini, Michele Falce, Francesco Raimo, Tommaso Enotrio, Mariarosaria Sicignano, Salvatore Baiano and Luisa del Piano
Sustainability 2024, 16(16), 7089; https://doi.org/10.3390/su16167089 - 18 Aug 2024
Cited by 1 | Viewed by 1661
Abstract
Mulching is one of the most recommended practices in agriculture due to its positive effects on the plant/soil system. Very few experiments have been conducted to date to investigate the effect of mulching, with both organic and inorganic materials, on tobacco. The main [...] Read more.
Mulching is one of the most recommended practices in agriculture due to its positive effects on the plant/soil system. Very few experiments have been conducted to date to investigate the effect of mulching, with both organic and inorganic materials, on tobacco. The main aim of this study was to test the synergic effect of a soil-biodegradable (according to standard EN17033) mulching film (the commercial Mater-Bi®, Novamont SpA, Novara, Italy) and drip irrigation (M-D) compared with that of bare soil and sprinkler/drip irrigation (first/second part of the growing season; BS-SD) on a tobacco crop (Nicotiana tabacum L., flue-cured Virginia) grown in the Tiber Valley (the tobacco cultivation district of Central Italy). BS-SD represents the standard practice applied by tobacco growers in the study area. The plants grown under the M-D management system grew more and developed faster than the plants grown under BS-SD conditions. Under the M-D system, yields increased in comparison with the BS-SD conditions (+29%, on average). The gross revenue obtained via the M-D-cured products also increased (+63%, on average) thanks to higher prices assigned by expert evaluators on the basis of the extrinsic quality traits (color, structure and texture, degree of ripeness, elasticity, lamina integrity, handling defects, and vein incidence). The economic value of the cured products increased with the leaf crowns; it was the lowest in the basal (B) leaves and the highest in the middle-upper (MU) leaves. The intrinsic quality traits of the cured leaves (total N and nitrate contents, alkaloids, and reducing sugars) also confirmed that the best quality was found in the M-D-cured products, as determined by expert evaluation. Interestingly, the reducing sugar (RS) contents of tobacco obtained using the M-D management system were 2.5-, 1.1-, and 0.9-fold greater than those under the BS-SD conditions (B, M, and MU products, respectively). An additional commercial value of the cured products was thus obtained with the M-D crop management system due to RS, an intrinsic quality trait considered by manufacturing industries. Full article
(This article belongs to the Special Issue Sustainable Agriculture: Cultivation and Breeding of Crops)
Show Figures

Figure 1

20 pages, 3901 KiB  
Article
Organic Fraction Municipal Solid Waste Compost and Horse Bean Green Manure Improve Sustainability of a Top-Quality Tobacco Cropping System: The Beneficial Effects on Soil and Plants
by Maria Isabella Sifola, Eugenio Cozzolino, Daniele Todisco, Mario Palladino, Mariarosaria Sicignano and Luisa del Piano
Sustainability 2024, 16(15), 6466; https://doi.org/10.3390/su16156466 - 28 Jul 2024
Cited by 2 | Viewed by 2045
Abstract
Organic amendment and green manuring are two agricultural practices highly recommended to improve sustainability in agriculture since they show numerous beneficial effects on both soils and crops. The main aim of the present study was to evaluate the effect of both, specifically organic [...] Read more.
Organic amendment and green manuring are two agricultural practices highly recommended to improve sustainability in agriculture since they show numerous beneficial effects on both soils and crops. The main aim of the present study was to evaluate the effect of both, specifically organic fraction municipal solid waste (OFMSW) compost and horse bean (Vicia faba L., cv minor) green manure, combined separately or together with a mineral fertilization using synthetic products and in comparison with a mineral fertilization alone (control), on a top-quality tobacco crop (dark fire-cured Kentucky) grown in the cultivation district of Central Italy (High Tiber Valley, Tuscany region) in 2020 and 2021. The following parameters were measured: (i) leaf emergence rate (LER, leaves day−1); (ii) crop growth rate (CGR, kg dry biomass ha−1 day−1); (iii) root weight density (RWD, mg cm−3); (iv) yield of cured product (CLY, Mg ha−1). Analytical determinations were carried out on soil, sampled at the 0–0.3 m depth (organic matter, %; total N, %; NO3-N, mg kg−1; C/N; P and K, mg kg−1), and on plant biomass (total N, %; NO3-N, kg ha−1). Soil water retention measures were also made. Water productivity (WP, kg cured product m−3 gross crop evapotranspiration, ETc gross), irrigation water use efficiency (IWUE, kg cured product m−3 seasonal irrigation volume) and N agronomic efficiency (NAE, kg cured product kg−1 mineral N applied by synthetic fertilizers) were calculated. Both the applications of OFMSW compost and horse bean green manure increased soil content of organic matter and main nutrients (N, P and K), as well as C/N, when compared with control conditions. There was an increase in soil water content in C conditions over the entire soil matric potential interval (0.04 to 1.2 MPa) with a maximum value at 1.2 MPa in both years. Both practices appeared promising for tobacco cultivation and could help to better address the nitrogen needs of the crop during the season and reduce potential water pollution due to nitrates. Considering the amount of synthetic nitrogen fertilizer saved by using both organic soil amendment and green manuring, there should be fewer potential carbon emissions due to the production, transportation and field application of synthetic nitrogen fertilizers. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 661 KiB  
Article
Effect of Transplanting Time and Nitrogen–Potassium Ratio on Yield, Growth, and Quality of Cauliflower Landrace Gigante di Napoli in Southern Italy
by Alessio Vincenzo Tallarita, Eugenio Cozzolino, Antonio Salluzzo, Agnieszka Sekara, Robert Pokluda, Otilia Cristina Murariu, Lorenzo Vecchietti, Luisa del Piano, Pasquale Lombardi, Antonio Cuciniello and Gianluca Caruso
Horticulturae 2024, 10(5), 518; https://doi.org/10.3390/horticulturae10050518 - 17 May 2024
Cited by 1 | Viewed by 1473
Abstract
Research has been increasingly focusing on the preservation of the biodiversity of vegetable crops under sustainable farming management. An experiment was carried out in southern Italy on Brassica oleracea L. var. botrytis, landrace Gigante di Napoli, to assess the effects of two transplanting [...] Read more.
Research has been increasingly focusing on the preservation of the biodiversity of vegetable crops under sustainable farming management. An experiment was carried out in southern Italy on Brassica oleracea L. var. botrytis, landrace Gigante di Napoli, to assess the effects of two transplanting times (9 September and 7 October), in factorial combination with five nitrogen–potassium ratios (0.6; 0.8; 1.0; 1.2; and 1.4) on plant growth, yield, and quality of cauliflower heads. A split-plot design was used for the treatment distribution in the field, with three replications. The earlier transplant and the 1.2 N:K ratio led to the highest yield, mean weight, and firmness of cauliflower heads which were not significantly affected by both transplanting time and N:K ratio in terms of colour components. The 1.2 N:K ratio led to the highest head diameter with the earlier transplant, whereas the 1.0 ratio was the most effective on this parameter in the later crop cycle. The highest nitrate, nitrogen, and potassium concentrations in the heads were recorded with the earlier transplanting time. Antioxidant activity, ascorbic acid, and polyphenol content increased with the rise of the N:K ratio. The element use efficiency was constantly negative with the N:K increase for nitrogen and was augmented until the 1.2 ratio for potassium. The results of our investigation showed that the optimal combination between transplanting time and N:K ratio is a key aspect to improve head yield and quality of the cauliflower landrace Gigante di Napoli, under the perspective of biodiversity safeguarding and valorisation. Full article
Show Figures

Figure 1

18 pages, 3113 KiB  
Article
Assessment of Yield and Quality of Eggplant (Solanum melongena L.) Fruits Improved by Biodegradable Mulching Film in Two Different Regions of Southern Italy
by Giuseppe Di Miceli, Nicolò Iacuzzi, Claudio Leto, Eugenio Cozzolino, Ida Di Mola, Lucia Ottaiano, Mauro Mori and Salvatore La Bella
Agronomy 2024, 14(4), 867; https://doi.org/10.3390/agronomy14040867 - 20 Apr 2024
Cited by 7 | Viewed by 3426
Abstract
Low-density polyethylene (LDPE) mulching films have an important function in crop cultivation; at the end of their life, however, their removal and disposal become both an economic and environmental problem. One possible alternative to low-density polyethylene (LDPE) mulch is provided by certified soil-biodegradable [...] Read more.
Low-density polyethylene (LDPE) mulching films have an important function in crop cultivation; at the end of their life, however, their removal and disposal become both an economic and environmental problem. One possible alternative to low-density polyethylene (LDPE) mulch is provided by certified soil-biodegradable mulch films, such as those produced by Novamont and commercially available under the trade name MaterBi®. MaterBi is a biodegradable thermoplastic material made with starch and a biodegradable copolyester based on proprietary technology. In this study, we compared two biodegradable MaterBi®-based films (commercial and experimental films) with bare soil and a low-density polyethylene to evaluate their effect on yield and on a number of qualitative characteristics (organoleptic and nutraceutical composition) of eggplant fruits (cv Mirabelle F1) grown in two different regions in Southern Italy (Sicily and Campania). In our study, the use of biodegradable MaterBi® films improved not only yield and production parameters, such as the number and average weight of fruits, but also lipophilic and hydrophilic antioxidant activity and phenolic and ascorbic acid content. For many parameters, responses differed according to the cultivation environment and, in particular, the site’s pedoclimatic conditions. Our results suggest that biodegradable MaterBi®-based mulching films are a potentially valid alternative to traditional LDPEs, providing the production and quality benefits reported above and promoting environmental sustainability, thanks to their positive biodegradable properties. Full article
Show Figures

Figure 1

Back to TopTop