Effect of Transplanting Time and Nitrogen–Potassium Ratio on Yield, Growth, and Quality of Cauliflower Landrace Gigante di Napoli in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Growing Conditions, and Experimental Protocol
2.2. Nitrate and N, P, and K Determinations
2.3. Ascorbic Acid
2.4. Total Phenols
2.5. Antioxidant Activity
2.6. Nitrogen Use Efficiency (NUE) and Potassium Use Efficiency (KUE) on Yield Calculation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Yield and Growth Parameters
3.2. Nitrate, Nitrogen, Phosphorus, and Potassium Concentrations
3.3. Quality Parameters
3.4. Nitrogen and Potassium Use Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salgotra, R.K.; Chauhan, B.S. Genetic diversity, conservation, and utilization of plant genetic resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Frison, E.; Cherfas, J.; Hodgkin, T. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Falco, S. On the value of agricultural biodiversity. Annu. Rev. Resour. Econ. 2012, 4, 207–223. [Google Scholar] [CrossRef]
- Gabriel, D.; Sait, S.M.; Kunin, W.E.; Benton, T.G. Food production vs. biodiversity: Comparing organic and conventional agriculture. J. Appl. Ecol. 2013, 50, 355–364. [Google Scholar] [CrossRef]
- Everaarts, A. Nitrogen balance during the growth of cauliflower. Sci. Hortic. 2000, 83, 173–186. [Google Scholar] [CrossRef]
- Kodithuwakku, D.; Kirthisinghe, J.P. The effect of different rates of nitrogen fertilizer application on the growth, yield, and postharvest life of cauliflower. Trop. Agric. Res. 2010, 21, 110–114. [Google Scholar] [CrossRef]
- Xie, Y.; Kristensen, H. Overwintering grass-clover as intercrop and moderately reduced nitrogen fertilization maintain yield and reduce the risk of nitrate leaching in an organic cauliflower (Brassica oleracea L. var. botrytis) agroecosystem. Sci. Hortic. 2016, 206, 71–79. [Google Scholar] [CrossRef]
- Boogaard, R.; Thorup-Kristensen, K. Effects of nitrogen fertilization on growth and soil nitrogen depletion in cauliflower. Acta Agric. Scand. Sect. B—Soil Plant Sci. 1997, 47, 149–155. [Google Scholar]
- Meng, H.; Xinsheng, H.; Jing, W.; Jiang, D.-F. Study of the effect of nitrogen, phosphorus, and potassium fertilizer combined application on the yield of peanut intercrop cauliflower. J. Qingdao Agric. Univ. 2010, 27, 285–288. [Google Scholar]
- Kalisz, A.; Gil, J.; Kunicki, E.; Sękara, A.; Sałata, A.; Caruso, G. Different temperature regimes influenced the quality of broccoli seedlings, which caused a change in the chemical composition of mature heads. Agronomy 2021, 11, 1806. [Google Scholar] [CrossRef]
- Castoldi, R.; Charlo, H.C.O.; Vargas, P.F.; Braz, L.T. Growth, nutrients accumulation and crop productivity of cauliflower. Hortic. Bras. 2009, 27, 438–446. [Google Scholar] [CrossRef]
- Figas, A.; Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Ptach, W. Effect of the predicted climate changes on the water needs of cauliflower cultivated in Central Poland. In Proceedings of the 18th International Scientific Conference “Eng. Rural Dev.”, Jelgava, Latvia, 22–24 May 2019. [Google Scholar]
- Wang, R.; Wang, Y.; Zhang, Z.; Pan, H.; Lan, L.; Huang, R.; Peng, Y. Effects of Exponential N Application on Soil Exchangeable Base Cations and the Growth and Nutrient Contents of Clonal Chinese Fir Seedlings. Plants 2023, 12, 851. [Google Scholar] [CrossRef]
- Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G.; Zhu, Z. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 2020, 11, 904. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xia, S.; Zhang, R.; Zhang, R.; Chen, F.; Liu, Y. N2O emissions and product ratios of nitrification and denitrification are altered by K fertilizer in acidic agricultural soils. Environ. Pollut. 2020, 265 Pt B, 115065. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Hafeez, A.; Ma, X.; Tung, S.A.; Chattha, M.S.; Shah, A.N.; Luo, D.; Ahmad, S.; Liu, J. Equal potassium-nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Ind. Crops Prod. 2019, 129, 231–241. [Google Scholar] [CrossRef]
- Lester, G.; Jifon, J.; Makus, D. Impact of potassium nutrition on postharvest fruit quality: Melon (Cucumis melo L) case study. Plant Soil 2010, 335, 117–131. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; El-Nakhel, C.; Rippa, M.; Mormile, P.; Mori, M. Assessment of yield and nitrate content of wall rocket grown under diffuse-light-or clear-plastic films and subjected to different nitrogen fertilization levels and biostimulant application. Horticulturae 2022, 8, 138. [Google Scholar] [CrossRef]
- Jagota, S.K.; Dani, H.M. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem. 1982, 127, 178–182. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Devi, P.; Sharma, A.; Saini, A.; Sharma, S. Effect of different spacing and transplanting dates on the growth and yield of cauliflower (Brassica oleracea var. botrytis L.). Int. J. Adv. Res. 2022. [Google Scholar] [CrossRef]
- Kartika, L.N.F.; Lakitan, B. Growth responses and yield of cauliflower (Brassica oleracea var. botrytis L.) to the delayed transplanting and drought stress. E3S Web Conf. 2021, 306, 01007. [Google Scholar] [CrossRef]
- Sultana, J.; Mannan, M.A.; Ahmed, S.; Khan, K.U. Planting date affects growth and yield performance of cauliflower (Brassica oleracea var. botrytis). South Asian J. Agric. 2019. [Google Scholar] [CrossRef]
- Kalisz, A.; Sękara, A.; Cebula, S.; Grabowska, A.; Kunicki, E. Impact of low-temperature transplant treatment on yield and quality of cauliflower curds in late spring production. Sci. Hortic. 2014, 176, 134–142. [Google Scholar] [CrossRef]
- Rahman, M.; Imran, M.; Ikrum, M.; Rahman, M.; Rabbani, M. Effects of Planting Date and Growth Hormone on Growth and Yield of Cauliflower. J. Environ. Sci. Nat. Resour. 2017, 9, 143–150. [Google Scholar] [CrossRef]
- Wadan, D.; Khan, M.; Hassan, I.; Jan, M. Effect of different levels of nitrogen and potassium on yield and yield components of cauliflower. Int. J. Life Sci. 2008, 2, 579–583. [Google Scholar]
- Yildirim, E. Effects of plant growth-promoting rhizobacteria (PGPR) and different fertilizer combinations on yield and quality properties in cauliflower (Brassica oleracea L. var. botrytis). Akad. Ziraat Derg. 2022, 11, 35–46. [Google Scholar] [CrossRef]
- Devienne-Barret, F.; Richard-Molard, C.; Chelle, M.; Maury, O.; Ney, B. Ara-rhizotron: An effective culture system to study simultaneously root and shoot development of Arabidopsis. Plant Soil 2006, 280, 253–266. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Katuwal, D.R.; Bhandari, N.; Pokhrel, A. Response of different levels of nitrogen on growth and yield of cauliflower (Brassica oleracea var. botrytis) varieties. Asian J. Agric. Hortic. Res. 2023, 10, 105–114. [Google Scholar] [CrossRef]
- Cutcliffe, J.A.; Munro, D.C. Effects of nitrogen, phosphorus and potassium on yield and maturity of cauliflower. Can. J. Plant Sci. 1976, 56, 127–131. [Google Scholar] [CrossRef]
- Ali, A. Nitrate assimilation pathway in higher plants: Critical role in nitrogen signalling and utilization. Plant Sci. Today 2020, 7, 182–192. [Google Scholar] [CrossRef]
- Signore, A.; Bell, L.; Santamaria, P.; Wagstaff, C.; Van Labeke, M.C. Red light is effective in reducing nitrate concentration in rocket by increasing nitrate reductase activity, and contributes to increased total glucosinolates content. Front. Plant Sci. 2020, 11, 532456. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Wang, Y.; Hao, Y.; Su, W.; Sun, G.; Song, S. Nitrogen absorption pattern detection and expression analysis of nitrate transporters in flowering Chinese cabbage. Horticulturae 2022, 8, 188. [Google Scholar] [CrossRef]
- Chen, B.M.; Wang, Z.H.; Li, S.X.; Wang, G.X.; Song, H.X.; Wang, X.N. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 2004, 167, 635–643. [Google Scholar] [CrossRef]
- Ter Steege, M.W.; Stulen, I.; Wiersema, P.K.; Posthumus, F.; Vaalburg, W. Efficiency of nitrate uptake in spinach: Impact of external nitrate concentration and relative growth rate on nitrate influx and efflux. Plant Soil 1999, 208, 125–134. [Google Scholar] [CrossRef]
- Kaya, C. Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiol. Plant 2021, 172, 351–370. [Google Scholar] [CrossRef]
- Matt, P.; Geiger, M.; Walch-Liu, P.; Engels, C.; Krapp, A.; Stitt, M. The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: A major imbalance between the rate of nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period. Plant Cell Environ. 2001, 24, 177–190. [Google Scholar]
- Fu, Y.F.; Zhang, Z.W.; Yuan, S. Putative connections between nitrate reductase S-nitrosylation and NO synthesis under pathogen attacks and abiotic stresses. Front. Plant Sci. 2018, 9, 474. [Google Scholar] [CrossRef]
- Sony, S.; Islam, F.; Akter, M.; Rahman, M.; Rahman, M. Interaction effect of nitrogen and phosphorus on curd yield and seed production of cauliflower. J. Exp. Agric. Int. 2020, 42, 216–225. [Google Scholar] [CrossRef]
- Everaarts, A.P.; Booi, R. The effect of nitrogen application on nitrogen utilization by white cabbage (Brassica oleracea var. capitata) and on nitrogen in the soil at harvest. J. Hortic. Sci. Biotechnol. 2000, 75, 705–712. [Google Scholar] [CrossRef]
- Metwaly, E. Influence of phosphorus and potassium on growth and yield of cauliflower. J. Plant Prod. 2017, 8, 329–334. [Google Scholar] [CrossRef]
- Lisiewska, Z.; Kmiecik, W. Effects of level of nitrogen fertilizer, processing conditions and period of storage of frozen broccoli and cauliflower on vitamin C retention. Food Chem. 1996, 57, 267–270. [Google Scholar] [CrossRef]
- Giri, H. Effect of different doses and sources of nitrogen on postharvest quality of cauliflower. Asian J. Agric. Hortic. Res. 2021, 8, 19–26. [Google Scholar] [CrossRef]
- Šlosár, M.; Uher, A.; Čekey, N. The effect of nitrogen and sulphur nutrition on the yield and content of antioxidants in broccoli. Acta Hortic. Regiotectuare 2013, 16, 14–17. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Bogucka, B. The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato. J. Food Compos. Anal. 2016, 47, 69–75. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, L.; Huang, J.; Han, X.; Wan, S. Effect of nitrogen supply on the nitrogen use efficiency of an annual herb, Helianthus annuus L. J. Integr. Plant Biol. 2005, 47, 539–548. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, J.; Han, Y.; Hua, Y.; Guan, C.; Zhang, Z. Low nitrogen enhances nitrogen use efficiency by triggering NO3− uptake and its long-distance translocation. J. Agric. Food Chem. 2019, 67, 6736–6747. [Google Scholar] [CrossRef]
- Singh, J.P.; Singh, S.; Singh, V. Soil potassium fractions and response of cauliflower and onion to potassium. J. Indian Soc. Soil Sci. 2010, 58, 384–387. [Google Scholar]
Colour | ||||||||
---|---|---|---|---|---|---|---|---|
Experimental Treatment | Crop Cycle Duration (Days) | Yield (t ha−1) | Head Fresh Weight (kg) | Head Dry Weight (kg) | Firmness (N) | L* | a* | b* |
Transplanting time | ||||||||
9 September | 73.1 b | 11.1 a | 0.83 a | 0.17 | 6.65 a | 85.9 | 0.05 | 0.65 |
7 October | 81.4 a | 9.0 b | 0.61 b | 0.16 | 5.44 b | 85.8 | 0.54 | 0.04 |
n.s. | n.s. | n.s. | n.s. | |||||
N:K ratio | ||||||||
0.6 | 74.8 b | 9.2 d | 0.41 d | 0.14 c | 4.71 d | 85.5 | 0.44 | −0.10 |
0.8 | 75.1 b | 9.1 d | 0.47 c | 0.15 c | 5.81 c | 86.1 | −1.04 | 0.85 |
1.0 | 76.9 ab | 11.0 b | 0.76 b | 0.17 b | 6.45 b | 87.0 | 0.62 | 0.83 |
1.2 | 79.7 a | 11.3 a | 1.10 a | 0.19 a | 6.96 a | 85.6 | 0.81 | −0.17 |
1.4 | 79.8 a | 9.8 c | 0.86 b | 0.17 b | 6.31 b | 84.8 | 0.40 | 0.31 |
n.s. | n.s. | n.s. |
Experimental Treatment | Nitrate (mg kg−1) | N (mg kg−1) | P (mg kg−1) | K (mg kg−1) |
---|---|---|---|---|
Transplanting time | ||||
9 September | 341.00 a | 3728.27 a | 1081.25 | 4454.17 a |
7 October | 278.90 b | 3050.41 b | 884.62 | 3644.32 b |
n.s. | ||||
N:K ratio | ||||
0.6 | 393.90 a | 3706.25 a | 1016.21 a | 5816.14 a |
0.8 | 342.23 b | 3483.88 b | 1036.50 a | 4942.54 b |
1.0 | 303.21 c | 3449.48 b | 999.52 a | 3105.98 c |
1.2 | 273.28 d | 3157.52 c | 958.75 ab | 3378.85 c |
1.4 | 237.36 e | 3149.57 c | 903.59 b | 3002.73 d |
Experimental Treatment | Ascorbic Acid (mg 100 g−1 f.w.) | Antioxidant Activity (µmol Trolox Equivalent 100 g−1 f.w.) | Total Phenols (mg Equivalent GAE 100 g−1 f.w.) |
---|---|---|---|
Transplanting | |||
9 September | 3.74 b | 368.06 | 64.17 b |
7 October | 4.55 a | 362.97 | 78.43 a |
n.s. | |||
N:K | |||
0.6 | 3.37 c | 330.44 b | 55.57 c |
0.8 | 3.95 b | 368.69 ab | 67.25 b |
1.0 | 3.92 b | 346.49 b | 69.28 b |
1.2 | 4.88 a | 387.42 ab | 79.78 ab |
1.4 | 4.63 a | 394.50 a | 84.66 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tallarita, A.V.; Cozzolino, E.; Salluzzo, A.; Sekara, A.; Pokluda, R.; Murariu, O.C.; Vecchietti, L.; del Piano, L.; Lombardi, P.; Cuciniello, A.; et al. Effect of Transplanting Time and Nitrogen–Potassium Ratio on Yield, Growth, and Quality of Cauliflower Landrace Gigante di Napoli in Southern Italy. Horticulturae 2024, 10, 518. https://doi.org/10.3390/horticulturae10050518
Tallarita AV, Cozzolino E, Salluzzo A, Sekara A, Pokluda R, Murariu OC, Vecchietti L, del Piano L, Lombardi P, Cuciniello A, et al. Effect of Transplanting Time and Nitrogen–Potassium Ratio on Yield, Growth, and Quality of Cauliflower Landrace Gigante di Napoli in Southern Italy. Horticulturae. 2024; 10(5):518. https://doi.org/10.3390/horticulturae10050518
Chicago/Turabian StyleTallarita, Alessio Vincenzo, Eugenio Cozzolino, Antonio Salluzzo, Agnieszka Sekara, Robert Pokluda, Otilia Cristina Murariu, Lorenzo Vecchietti, Luisa del Piano, Pasquale Lombardi, Antonio Cuciniello, and et al. 2024. "Effect of Transplanting Time and Nitrogen–Potassium Ratio on Yield, Growth, and Quality of Cauliflower Landrace Gigante di Napoli in Southern Italy" Horticulturae 10, no. 5: 518. https://doi.org/10.3390/horticulturae10050518
APA StyleTallarita, A. V., Cozzolino, E., Salluzzo, A., Sekara, A., Pokluda, R., Murariu, O. C., Vecchietti, L., del Piano, L., Lombardi, P., Cuciniello, A., & Caruso, G. (2024). Effect of Transplanting Time and Nitrogen–Potassium Ratio on Yield, Growth, and Quality of Cauliflower Landrace Gigante di Napoli in Southern Italy. Horticulturae, 10(5), 518. https://doi.org/10.3390/horticulturae10050518