Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Authors = Eleonore Fröhlich ORCID = 0000-0002-6056-6829

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1790 KiB  
Article
Development of Co-Amorphous Systems for Inhalation Therapy—Part 1: From Model Prediction to Clinical Success
by Eleonore Fröhlich, Aurora Bordoni, Nila Mohsenzada, Stefan Mitsche, Hartmuth Schröttner and Sarah Zellnitz-Neugebauer
Pharmaceutics 2025, 17(7), 922; https://doi.org/10.3390/pharmaceutics17070922 - 16 Jul 2025
Viewed by 418
Abstract
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary [...] Read more.
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary co-amorphous systems (COAMSs) for inhalation therapy. The model’s ability to develop a dry powder formulation with the necessary properties for a predicted co-amorphous combination was evaluated. Methods: An extended experimental validation of the ML model by co-milling and X-ray diffraction analysis for 18 API-API (active pharmaceutical ingredient) combinations is presented. Additionally, one COAMS of rifampicin (RIF) and ethambutol (ETH), two first-line tuberculosis (TB) drugs are developed further for inhalation therapy. Results: The ML model has shown an accuracy of 79% in predicting suitable combinations for 35 APIs used in inhalation therapy; experimental accuracy was demonstrated to be 72%. The study confirmed the successful development of stable COAMSs of RIF-ETH either via spray-drying or co-milling. In particular, the milled COAMSs showed better aerosolization properties (higher ED and FPF with lower standard deviation). Further, RIF-ETH COAMSs show much more reproducible results in terms of drug quantity dissolved over time. Conclusions: ML has been shown to be a suitable tool to predict COAMSs that can be developed for TB treatment by inhalation to save time and cost during the experimental screening phase. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Graphical abstract

23 pages, 4969 KiB  
Article
Immune Modulation with Nanodiscs: Surface Charge Dictates Cellular Interactions and Activation of Macrophages and Dendritic-like Cells
by Scarlett Zeiringer, Martina Derler, Marion Mussbacher, Tatjana Kolesnik, Eleonore Fröhlich, Gerd Leitinger, Dagmar Kolb, Sarah Tutz, Carolyn Vargas, Sandro Keller and Eva Roblegg
Int. J. Mol. Sci. 2025, 26(11), 5154; https://doi.org/10.3390/ijms26115154 - 28 May 2025
Viewed by 2712
Abstract
The immunological barrier is among the most significant barriers in vivo. Macrophages and dendritic cells play a crucial role in immune responses, involving phagocytosis, antigen presentation, and triggering adaptive responses. Nanoscale drug-delivery vehicles, such as polymer-encapsulated lipid-bilayer nanodiscs, are of particular interest in [...] Read more.
The immunological barrier is among the most significant barriers in vivo. Macrophages and dendritic cells play a crucial role in immune responses, involving phagocytosis, antigen presentation, and triggering adaptive responses. Nanoscale drug-delivery vehicles, such as polymer-encapsulated lipid-bilayer nanodiscs, are of particular interest in the development of new therapeutic approaches, but require well-characterized human in vitro cell models. To this end, the present study differentiated human monocytes into two distinct states, resting macrophages and immature dendritic-like cells (iDCs). These cells served as model systems to assess the efficacy of lipid-bilayer nanodiscs encapsulated by anionic glyco-DIBMA (diisobutylene–maleic acid) or electroneutral sulfo-DIBMA polymers. Nanodisc–cell interaction studies—including cell viability, reactive oxygen species production, cytokine release, particle uptake, and activation marker expression—demonstrated that immune responses depend sensitively on the cell type and polymer and thus on the surface charge of the nanodiscs. Sulfo-DIBMA nanodiscs induced minimal immune cell activation, accompanied by cytokine release and reduced uptake of the nanodiscs by immune cells. In contrast, glyco-DIBMA nanodiscs exhibited increased interactions with cells, elicited pro-inflammatory immune responses, and promoted iDC maturation. This involved co-stimulatory and antigen-presenting molecules, potentially leading to T-cell activation. These findings underscore the potential of glyco-DIBMA nanodiscs to modulate immune responses through receptor-specific interactions, paving the way for immunotherapeutic strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

20 pages, 3130 KiB  
Article
Skin Sensitization Potential of Sensitizers in the Presence of Metal Oxide Nanoparticles In Vitro
by Claudia Meindl, Kristin Öhlinger, Verena Zrim, Jennifer Ober, Ramona Jeitler, Eva Roblegg and Eleonore Fröhlich
Nanomaterials 2024, 14(22), 1811; https://doi.org/10.3390/nano14221811 - 12 Nov 2024
Viewed by 1422
Abstract
Silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles (NPs) are widely used in dermal products. Their skin sensitization potential, especially their effects in combination with known sensitizers, is poorly studied in vitro and their sensitization inconsistently reported [...] Read more.
Silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles (NPs) are widely used in dermal products. Their skin sensitization potential, especially their effects in combination with known sensitizers, is poorly studied in vitro and their sensitization inconsistently reported in animal studies. In this study, cellular assays were used to identify different steps of sensitization, the activation of keratinocytes and dendritic cells, when cells were exposed to these NPs in the absence and presence of sensitizers. Cellular systems included HaCaT keratinocytes and U937 (U-SENS™) alone, as well as different co-culture systems of THP-1 cells with HaCaT cells (COCAT) and with primary keratinocytes. The effect of NPs differed between co-cultures and U-SENS™, whereas co-cultures with either primary keratinocytes or HaCaT cells responded similarly. Pre-exposure to ZnO NPs increased the U-SENS™ assay response to 2,4-dinitrochlorobenzene six-fold. The COCAT increase was maximally four-fold for the combination of SiO2 and trans cinnamaldehyde. When the THP-1 cells were separated from the keratinocytes by a membrane, the response of the co-culture system was more similar to U-SENS™. The direct contact with keratinocytes decreased the modulating effect of TiO2 and ZnO NPs but suggested an increase in response to sensitizers following dermal contact with SiO2 NPs. Full article
(This article belongs to the Special Issue Advances in Nanotoxicology: Health and Safety)
Show Figures

Figure 1

22 pages, 6720 KiB  
Article
Archaeosomes for Oral Drug Delivery: From Continuous Microfluidics Production to Powdered Formulations
by Ivan Vidakovic, Karin Kornmueller, Daniela Fiedler, Johannes Khinast, Eleonore Fröhlich, Gerd Leitinger, Christina Horn, Julian Quehenberger, Oliver Spadiut and Ruth Prassl
Pharmaceutics 2024, 16(6), 694; https://doi.org/10.3390/pharmaceutics16060694 - 23 May 2024
Cited by 4 | Viewed by 2160
Abstract
Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for [...] Read more.
Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for oral drug delivery, with a focus on powdered formulations. The archaeosomes were negatively charged with a size of approximately 100 nm and a low polydispersity index. To assess their suitability for oral delivery, the archaeosomes were loaded with two model drugs: calcein, a fluorescent compound, and insulin, a peptide hormone. The archaeosomes demonstrated high stability in simulated intestinal fluids, with only 5% of the encapsulated compounds being released after 24 h, regardless of the presence of degrading enzymes or extremely acidic pH values such as those found in the stomach. In a co-culture cell model system mimicking the intestinal barrier, the archaeosomes showed strong adhesion to the cell membranes, facilitating a slow release of contents. The archaeosomes were loaded with insulin in a single-step procedure achieving an encapsulation efficiency of approximately 35%. These particles have been exposed to extreme manufacturing temperatures during freeze-drying and spray-drying processes, demonstrating remarkable resilience under these harsh conditions. The fabrication of stable dry powder formulations of archaeosomes represents a promising advancement toward the development of solid dosage forms for oral delivery of biological drugs. Full article
(This article belongs to the Special Issue Advances in Oral Administration)
Show Figures

Graphical abstract

32 pages, 2634 KiB  
Review
Animals in Respiratory Research
by Eleonore Fröhlich
Int. J. Mol. Sci. 2024, 25(5), 2903; https://doi.org/10.3390/ijms25052903 - 1 Mar 2024
Cited by 22 | Viewed by 6491
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used [...] Read more.
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1938 KiB  
Review
Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation
by Eleonore Fröhlich and Richard Wahl
Int. J. Mol. Sci. 2023, 24(14), 11699; https://doi.org/10.3390/ijms241411699 - 20 Jul 2023
Cited by 4 | Viewed by 3978
Abstract
Thyroid-stimulating hormone (TSH) and thyroid hormone levels are standard parameters in blood analysis. However, the immunoassays employed may lead to false-positive or false-negative results when the sample contains certain materials that interfere with the assay. Macro-TSH, a complex of TSH with immunoglobulin or [...] Read more.
Thyroid-stimulating hormone (TSH) and thyroid hormone levels are standard parameters in blood analysis. However, the immunoassays employed may lead to false-positive or false-negative results when the sample contains certain materials that interfere with the assay. Macro-TSH, a complex of TSH with immunoglobulin or albumin, may cause apparently increased TSH concentrations. TSH is produced in the pars tuberalis (PT) of the pituitary gland and by thyrotrophs of the pars distalis (PD). It was found that variable glycosylation can render the molecule more strongly bound to antibodies or albumin in the blood, leading to the hypothesis that macro-TSH consists mainly of PT-TSH. Although less known than PD-TSH, PT-TSH plays an important role in the central regulation of thyroid metabolism. The present review summarizes the physiological function of human PT-TSH and its role in macro-TSH formation. The prevalence of macro-hyperthyrotropinemia, the structure of PT-TSH and macro-TSH, problems in the measurement of TSH, and the action of PT-TSH in animals with seasonal breeding are discussed. Despite the absence of a specific function of macro-TSH in the organism, the identification of macro-TSH is important for avoiding unnecessary treatment based on a falsified readout of increased TSH concentrations as numerous individual case reports describe. Full article
Show Figures

Graphical abstract

20 pages, 26843 KiB  
Article
Lipid Nanoparticles as a Shuttle for Anti-Adipogenic miRNAs to Human Adipocytes
by Anna-Laurence Schachner-Nedherer, Julia Fuchs, Ivan Vidakovic, Oliver Höller, Gebhard Schratter, Gunter Almer, Eleonore Fröhlich, Andreas Zimmer, Martin Wabitsch, Karin Kornmueller and Ruth Prassl
Pharmaceutics 2023, 15(7), 1983; https://doi.org/10.3390/pharmaceutics15071983 - 19 Jul 2023
Cited by 6 | Viewed by 3013
Abstract
Obesity and type 2 diabetes are major health burdens for which no effective therapy is available today. One treatment strategy could be to balance the metabolic functions of adipose tissue by regulating gene expressions using miRNAs. Here, we have loaded two anti-adipogenic miRNAs [...] Read more.
Obesity and type 2 diabetes are major health burdens for which no effective therapy is available today. One treatment strategy could be to balance the metabolic functions of adipose tissue by regulating gene expressions using miRNAs. Here, we have loaded two anti-adipogenic miRNAs (miR26a and miR27a) into a pegylated lipid nanoparticle (PEG-LNP) formulation by a single-step microfluidic-assisted synthesis step. For the miRNA-loaded LNPs, the following system properties were determined: particle size, zeta potential, miRNA complexation efficiency, and cytotoxicity. We have used a human preadipocyte cell line to address the transfection efficiency and biological effects of the miRNA candidates at the gene and protein level. Our findings revealed that the upregulation of miR27a in preadipocytes inhibits adipogenesis by the downregulation of PPARγ and the reduction of lipid droplet formation. In contrast, miR26a transfection in adipocytes induced white adipocyte browning detected as the upregulation of uncoupling protein 1 (UCP1) as a marker of non-shivering thermogenesis. We conclude that the selective delivery of miRNAs by PEG-LNPs to adipocytes could offer new perspectives for the treatment of obesity and related metabolic diseases. Full article
(This article belongs to the Special Issue Progress and Innovation on Nanosystems for Gene Therapy)
Show Figures

Figure 1

27 pages, 2364 KiB  
Review
The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening
by Eleonore Fröhlich
Int. J. Mol. Sci. 2023, 24(8), 7116; https://doi.org/10.3390/ijms24087116 - 12 Apr 2023
Cited by 25 | Viewed by 6982
Abstract
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes [...] Read more.
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer. Full article
(This article belongs to the Special Issue Breast Cancer Mechanistic Insights and Targeted Therapies)
Show Figures

Graphical abstract

19 pages, 5381 KiB  
Article
Assessment of Carbon Nanotubes on Barrier Function, Ciliary Beating Frequency and Cytokine Release in In Vitro Models of the Respiratory Tract
by Claudia Meindl, Markus Absenger-Novak, Ramona Jeitler, Eva Roblegg and Eleonore Fröhlich
Nanomaterials 2023, 13(4), 682; https://doi.org/10.3390/nano13040682 - 9 Feb 2023
Cited by 4 | Viewed by 2234
Abstract
The exposure to inhaled carbon nanotubes (CNT) may have adverse effects on workers upon chronic exposure. In order to assess the toxicity of inhaled nanoparticles in a physiologically relevant manner, an air–liquid interface culture of mono and cocultures of respiratory cells and assessment [...] Read more.
The exposure to inhaled carbon nanotubes (CNT) may have adverse effects on workers upon chronic exposure. In order to assess the toxicity of inhaled nanoparticles in a physiologically relevant manner, an air–liquid interface culture of mono and cocultures of respiratory cells and assessment in reconstructed bronchial and alveolar tissues was used. The effect of CNT4003 reference particles applied in simulated lung fluid was studied in bronchial (Calu-3 cells, EpiAirway™ and MucilAir™ tissues) and alveolar (A549 +/−THP-1 and EpiAlveolar™ +/−THP-1) models. Cytotoxicity, transepithelial electrical resistance, interleukin 6 and 8 secretion, mucociliary clearance and ciliary beating frequency were used as readout parameters. With the exception of increased secretion of interleukin 6 in the EpiAlveolar™ tissues, no adverse effects of CNT4003 particles, applied at doses corresponding to the maximum estimated lifetime exposure of workers, in the bronchial and alveolar models were noted, suggesting no marked differences between the models. Since the doses for whole-life exposure were applied over a shorter time, it is not clear if the interleukin 6 increase in the EpiAlveolar™ tissues has physiological relevance. Full article
(This article belongs to the Special Issue Risk Assessment of Nanomaterials Toxicity)
Show Figures

Graphical abstract

26 pages, 1580 KiB  
Review
Insight into Potential Interactions of Thyroid Hormones, Sex Hormones and Their Stimulating Hormones in the Development of Non-Alcoholic Fatty Liver Disease
by Eleonore Fröhlich and Richard Wahl
Metabolites 2022, 12(8), 718; https://doi.org/10.3390/metabo12080718 - 4 Aug 2022
Cited by 12 | Viewed by 3985
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common manifestation of metabolic syndrome. In addition to lifestyle, endocrine hormones play a role in the dysregulation of hepatic metabolism. The most common endocrine hormones contributing to metabolic syndrome are alterations in the levels of thyroid [...] Read more.
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common manifestation of metabolic syndrome. In addition to lifestyle, endocrine hormones play a role in the dysregulation of hepatic metabolism. The most common endocrine hormones contributing to metabolic syndrome are alterations in the levels of thyroid hormones (THs, predominantly in subclinical hypothyroidism) and of sex hormones (in menopause). These hormonal changes influence hepatic lipid and glucose metabolism and may increase hepatic fat accumulation. This review compares the effects of sex hormones, THs and the respective stimulating hormones, Thyroid-Stimulating Hormone (TSH) and Follicle-Stimulating Hormone (FSH), on the development of hepatosteatosis. TSH and FSH may be more relevant to the dysregulation of hepatic metabolism than the peripheral hormones because metabolic changes were identified when only levels of the stimulating hormones were abnormal and the peripheral hormones were still in the reference range. Increased TSH and FSH levels appear to have additive effects on the development of NAFLD and to act independently from each other. Full article
Show Figures

Graphical abstract

24 pages, 2512 KiB  
Review
Non-Cellular Layers of the Respiratory Tract: Protection against Pathogens and Target for Drug Delivery
by Eleonore Fröhlich
Pharmaceutics 2022, 14(5), 992; https://doi.org/10.3390/pharmaceutics14050992 - 5 May 2022
Cited by 9 | Viewed by 6376
Abstract
Epithelial barriers separate the human body from the environment to maintain homeostasis. Compared to the skin and gastrointestinal tract, the respiratory barrier is the thinnest and least protective. The properties of the epithelial cells (height, number of layers, intercellular junctions) and non-cellular layers, [...] Read more.
Epithelial barriers separate the human body from the environment to maintain homeostasis. Compared to the skin and gastrointestinal tract, the respiratory barrier is the thinnest and least protective. The properties of the epithelial cells (height, number of layers, intercellular junctions) and non-cellular layers, mucus in the conducting airways and surfactant in the respiratory parts determine the permeability of the barrier. The review focuses on the non-cellular layers and describes the architecture of the mucus and surfactant followed by interaction with gases and pathogens. While the penetration of gases into the respiratory tract is mainly determined by their hydrophobicity, pathogens use different mechanisms to invade the respiratory tract. Often, the combination of mucus adhesion and subsequent permeation of the mucus mesh is used. Similar mechanisms are also employed to improve drug delivery across the respiratory barrier. Depending on the payload and target region, various mucus-targeting delivery systems have been developed. It appears that the mucus-targeting strategy has to be selected according to the planned application. Full article
Show Figures

Figure 1

19 pages, 2868 KiB  
Article
Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles
by Atiđa Selmani, Elisabeth Seibert, Carolin Tetyczka, Doris Kuehnelt, Ivan Vidakovic, Karin Kornmueller, Markus Absenger-Novak, Borna Radatović, Ivana Vinković Vrček, Gerd Leitinger, Eleonore Fröhlich, Andreas Bernkop-Schnürch, Eva Roblegg and Ruth Prassl
Pharmaceutics 2022, 14(4), 803; https://doi.org/10.3390/pharmaceutics14040803 - 6 Apr 2022
Cited by 13 | Viewed by 4029
Abstract
This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by [...] Read more.
This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by a single step microfluidics-assisted chemical reduction and assembling process. Subsequently, chitosan-N-acetylcysteine was covalently conjugated to the preformed Lip-SeNPs. The Lip-SeNPs were characterized in terms of composition, morphology, size, zeta potential, lipid organization, loading efficiency and radical scavenging activity. A co-culture system (Caco-2:HT29-MTX) that integrates mucus secreting and enterocyte-like cell types was used as a model of the human intestinal epithelium to determine adsorption, mucus penetration, release and transport properties of Lip-SeNPs in vitro. Thiolated Lip-SeNPs were positively charged with an average size of about 250 nm. Thiolated Lip-SeNPs tightly adhered to the mucus layer without penetrating the enterocytes. This finding was consistent with ex vivo adsorption studies using freshly excised porcine small intestinal tissues. Due to the improved mucoadhesion and retention in a simulated microenvironment of the small intestine, thiolated Lip-SeNPs might be a promising tool for oral selenium delivery. Full article
(This article belongs to the Special Issue Application of Chitosan and Hyaluronan in Medicine)
Show Figures

Graphical abstract

22 pages, 1189 KiB  
Review
Replacement Strategies for Animal Studies in Inhalation Testing
by Eleonore Fröhlich
Sci 2021, 3(4), 45; https://doi.org/10.3390/sci3040045 - 1 Dec 2021
Cited by 10 | Viewed by 7207
Abstract
Animal testing is mandatory in drug testing and is the gold standard for toxicity and efficacy evaluations. This situation is expected to change in the future as the 3Rs principle, which stands for the replacement, reduction, and refinement of the use of animals [...] Read more.
Animal testing is mandatory in drug testing and is the gold standard for toxicity and efficacy evaluations. This situation is expected to change in the future as the 3Rs principle, which stands for the replacement, reduction, and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animal testing have increased. The need to develop and use alternatives depends on the complexity of the research topic and also on the extent to which the currently used animal models can mimic human physiology and/or exposure. The lung morphology and physiology of commonly used animal species differs from that of human lungs, and the realistic inhalation exposure of animals is challenging. In vitro and in silico methods can assess important aspects of the in vivo effects, namely particle deposition, dissolution, action at, and permeation through, the respiratory barrier, and pharmacokinetics. This review discusses the limitations of animal models and exposure systems and proposes in vitro and in silico techniques that could, when used together, reduce or even replace animal testing in inhalation testing in the future. Full article
(This article belongs to the Special Issue Biological In Vitro Models)
Show Figures

Figure 1

19 pages, 2610 KiB  
Review
Acute Respiratory Distress Syndrome: Focus on Viral Origin and Role of Pulmonary Lymphatics
by Eleonore Fröhlich
Biomedicines 2021, 9(11), 1732; https://doi.org/10.3390/biomedicines9111732 - 20 Nov 2021
Cited by 5 | Viewed by 5949
Abstract
Acute respiratory distress syndrome (ARDS) is a serious affection of the lung caused by a variety of pathologies. Great interest is currently focused on ARDS induced by viruses (pandemic influenza and corona viruses). The review describes pulmonary changes in ARDS and specific effects [...] Read more.
Acute respiratory distress syndrome (ARDS) is a serious affection of the lung caused by a variety of pathologies. Great interest is currently focused on ARDS induced by viruses (pandemic influenza and corona viruses). The review describes pulmonary changes in ARDS and specific effects of the pandemic viruses in ARDS, and summarizes treatment options. Because the known pathogenic mechanisms cannot explain all aspects of the syndrome, the contribution of pulmonary lymphatics to the pathology is discussed. Organization and function of lymphatics in a healthy lung and in resorption of pulmonary edema are described. A future clinical trial may provide more insight into the role of hyaluronan in ARDS but the development of promising pharmacological treatments is unlikely because drugs play no important role in lymphedema therapy. Full article
Show Figures

Figure 1

16 pages, 2863 KiB  
Article
Initial Biological Assessment of Upconversion Nanohybrids
by Juan Ferrera-González, Laura Francés-Soriano, Cristina Galiana-Roselló, Jorge González-Garcia, María González-Béjar, Eleonore Fröhlich and Julia Pérez-Prieto
Biomedicines 2021, 9(10), 1419; https://doi.org/10.3390/biomedicines9101419 - 9 Oct 2021
Cited by 12 | Viewed by 2831
Abstract
Nanoparticles for medical use should be non-cytotoxic and free of bacterial contamination. Upconversion nanoparticles (UCNPs) coated with cucurbit[7]uril (CB[7]) made by combining UCNPs free of oleic acid, here termed bare UCNPs (UCn), and CB[7], i.e., UC@CB[7] nanohybrids, could be used as [...] Read more.
Nanoparticles for medical use should be non-cytotoxic and free of bacterial contamination. Upconversion nanoparticles (UCNPs) coated with cucurbit[7]uril (CB[7]) made by combining UCNPs free of oleic acid, here termed bare UCNPs (UCn), and CB[7], i.e., UC@CB[7] nanohybrids, could be used as photoactive inorganic-organic hybrid scaffolds for biological applications. UCNPs, in general, are not considered to be highly toxic materials, but the release of fluorides and lanthanides upon their dissolution may cause cytotoxicity. To identify potential adverse effects of the nanoparticles, dehydrogenase activity of endothelial cells, exposed to various concentrations of the UCNPs, was determined. Data were verified by measuring lactate dehydrogenase release as the indicator of loss of plasma membrane integrity, which indicates necrotic cell death. This assay, in combination with calcein AM/Ethidium homodimer-1 staining, identified induction of apoptosis as main mode of cell death for both particles. The data showed that the UCNPs are not cytotoxic to endothelial cells, and the samples did not contain endotoxin contamination. Higher cytotoxicity, however, was seen in HeLa and RAW 264.7 cells. This may be explained by differences in lysosome content and particle uptake rate. Internalization of UCn and UC@CB[7] nanohybrids by cells was demonstrated by NIR laser scanning microscopy. Full article
(This article belongs to the Special Issue Optical Nanoparticles for Biomedicine)
Show Figures

Graphical abstract

Back to TopTop