Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Authors = Dalia H. Elkamchouchi ORCID = 0000-0002-9533-3179

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4369 KiB  
Article
Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset
by Neha Sharma, Sheifali Gupta, Dalia H. Elkamchouchi and Salil Bharany
Bioengineering 2025, 12(3), 309; https://doi.org/10.3390/bioengineering12030309 - 18 Mar 2025
Cited by 1 | Viewed by 880
Abstract
The gastrointestinal (GI) tract, an integral part of the digestive system, absorbs nutrients from ingested food, starting from the mouth to the anus. GI tract cancer significantly impacts global health, necessitating precise treatment methods. Radiation oncologists use X-ray beams to target tumors while [...] Read more.
The gastrointestinal (GI) tract, an integral part of the digestive system, absorbs nutrients from ingested food, starting from the mouth to the anus. GI tract cancer significantly impacts global health, necessitating precise treatment methods. Radiation oncologists use X-ray beams to target tumors while avoiding the stomach and intestines, making the accurate segmentation of these organs crucial. This research explores various combinations of encoders and decoders to segment the small bowel, large bowel, and stomach in MRI images, using the UW-Madison GI tract dataset consisting of 38,496 scans. Encoders tested include ResNet50, EfficientNetB1, MobileNetV2, ResNext50, and Timm_Gernet_S, paired with decoders UNet, FPN, PSPNet, PAN, and DeepLab V3+. The study identifies ResNet50 with DeepLab V3+ as the most effective combination, assessed using the Dice coefficient, Jaccard index, and model loss. The proposed model, a combination of DeepLab V3+ and ResNet 50, obtained a Dice value of 0.9082, an IoU value of 0.8796, and a model loss of 0.117. The findings demonstrate the method’s potential to improve radiation therapy for GI cancer, aiding radiation oncologists in accurately targeting tumors while avoiding healthy organs. The results of this study will assist healthcare professionals involved in biomedical image analysis. Full article
Show Figures

Figure 1

12 pages, 6177 KiB  
Article
A Conformal Tri-Band Antenna for Flexible Devices and Body-Centric Wireless Communications
by Wahaj Abbas Awan, Anees Abbas, Syeda Iffat Naqvi, Dalia H. Elkamchouchi, Muhammad Aslam and Niamat Hussain
Micromachines 2023, 14(10), 1842; https://doi.org/10.3390/mi14101842 - 27 Sep 2023
Cited by 18 | Viewed by 2040
Abstract
A conformal tri-band antenna tailored for flexible devices and body-centric wireless communications operating at the key frequency bands is proposed. The antenna is printed on a thin Rogers RT 5880 substrate, merely 0.254 mm thick, with an overall geometrical dimension of 15 × [...] Read more.
A conformal tri-band antenna tailored for flexible devices and body-centric wireless communications operating at the key frequency bands is proposed. The antenna is printed on a thin Rogers RT 5880 substrate, merely 0.254 mm thick, with an overall geometrical dimension of 15 × 20 × 0.254 mm3. This inventive design features a truncated corner monopole accompanied by branched stubs fed by a coplanar waveguide. The stubs, varying in length, serve as quarter-wavelength monopoles, facilitating multi-band functionality at 2.45, 3.5, and 5.8 GHz. Given the antenna’s intended applications in flexible devices and body-centric networks, the conformability of the proposed design is investigated. Furthermore, an in-depth analysis of the Specific Absorption Rate (SAR) is conducted using a four-layered human tissue model. Notably, the SAR values for the proposed geometry at 2.45, 3.5, and 5.8 GHz stand at 1.48, 1.26, and 1.1 W/kg for 1 g of tissue, and 1.52, 1.41, and 0.62 W/kg for 10 g of tissue, respectively. Remarkably, these values comfortably adhere to both FCC and European Union standards, as they remain substantially beneath the threshold values of 1.6 W/kg and 2 W/kg for 1 g and 10 g tissues, respectively. The radiation characteristics and performance of the antenna in flat and different bending configurations validate the suitability of the antenna for flexible devices and body-centric wireless communications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

2 pages, 190 KiB  
Correction
Correction: Yadav et al. An Enhanced Feed-Forward Back Propagation Levenberg–Marquardt Algorithm for Suspended Sediment Yield Modeling. Water 2022, 14, 3714
by Arvind Yadav, Premkumar Chithaluru, Aman Singh, Devendra Joshi, Dalia H. Elkamchouchi, Cristina Mazas Pérez-Oleaga and Divya Anand
Water 2023, 15(8), 1478; https://doi.org/10.3390/w15081478 - 10 Apr 2023
Cited by 1 | Viewed by 1107
Abstract
The authors would like to make the following corrections about the published paper [...] Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
21 pages, 2191 KiB  
Article
Secure and Lightweight Authentication Protocol for Privacy Preserving Communications in Smart City Applications
by Sunil Gupta, Fares Alharbi, Reem Alshahrani, Pradeep Kumar Arya, Sonali Vyas, Dalia H. Elkamchouchi and Ben Othman Soufiene
Sustainability 2023, 15(6), 5346; https://doi.org/10.3390/su15065346 - 17 Mar 2023
Cited by 27 | Viewed by 2871
Abstract
A smart city is a concept that leverages technology to improve the quality of life for citizens, enhance sustainability, and streamline urban services. The goal of a smart city is to use data and technology to manage resources and assets efficiently, make informed [...] Read more.
A smart city is a concept that leverages technology to improve the quality of life for citizens, enhance sustainability, and streamline urban services. The goal of a smart city is to use data and technology to manage resources and assets efficiently, make informed decisions, and create a more livable and thriving city for its residents. Smart cities rely on a range of technologies including the Internet of Things (IoT), Artificial Intelligence (AI), big data analytics, and cloud computing to gather, process, and analyze data from various sources. The aim is to create a city that is more connected, responsive, and sustainable, and that provides its residents with a better quality of life, opportunities, and services. A secure and efficient message communication protocol for sensitive information and real-time communication is critical for the functioning of a smart city environment. The main findings of this paper are to develop a new authentication protocol that meets the specific requirements and constraints of smart city applications. The message communication between smart cities is conducted with the help of a gateway. The challenge in constructing a working, viable infrastructure for a smart city is to provide secure authentication for message communication between the user and gateway node in one network, and the gateway node of one network to the gateway node of the other network. The objective for doing research to develop an authentication protocol that ensures the privacy and security of data transmitted in smart city applications while maintaining a lightweight and efficient design. This paper proposes a secure authentication protocol and key establishment scheme for access to the application in smart cities to make feasible access through the IoT environment. The proposed protocol ensures the mutual authentication between user and gateways, and the security analysis shows that the proposed protocol is effective against energy consumption and have less computational cost. The performance of the proposed method is analyzed and tested using BAN Logic and AVISPA security verification to confirm the authenticity of the security protocol. We do compare with past studies of which our proposed method outperformed. Full article
(This article belongs to the Special Issue Secure, Sustainable Smart Cities and the IoT)
Show Figures

Figure 1

13 pages, 3801 KiB  
Article
Bandwidth and Gain Enhancement of a CPW Antenna Using Frequency Selective Surface for UWB Applications
by Musa Hussain, Md. Abu Sufian, Mohammed S. Alzaidi, Syeda Iffat Naqvi, Niamat Hussain, Dalia H. Elkamchouchi, Mohamed Fathy Abo Sree and Sara Yehia Abdel Fatah
Micromachines 2023, 14(3), 591; https://doi.org/10.3390/mi14030591 - 28 Feb 2023
Cited by 37 | Viewed by 4359
Abstract
In this article, a single-layer frequency selective surface (FSS)-loaded compact coplanar waveguide (CPW)-fed antenna is proposed for very high-gain and ultra-wideband applications. At the initial stage, a geometrically simple ultra-wideband (UWB) antenna is designed which contains CPW feed lines and a multi-stub-loaded hexagonal [...] Read more.
In this article, a single-layer frequency selective surface (FSS)-loaded compact coplanar waveguide (CPW)-fed antenna is proposed for very high-gain and ultra-wideband applications. At the initial stage, a geometrically simple ultra-wideband (UWB) antenna is designed which contains CPW feed lines and a multi-stub-loaded hexagonal patch. The various stubs are inserted to improve the bandwidth of the radiator. The antenna operates at 5–17 GHz and offers 6.5 dBi peak gain. Subsequently, the proposed FSS structure is designed and loaded beneath the proposed UWB antenna to improve bandwidth and enhance gain. The antenna loaded with FSS operates at an ultra-wideband of 3–18 GHz and offers a peak gain of 10.5 dBi. The FSS layer contains 5 × 5 unit cells with a total dimension of 50 mm × 50 mm. The gap between the FSS layer and UWB antenna is 9 mm, which is fixed to obtain maximum gain. The proposed UWB antenna and its results are compared with the fabricated prototype to verify the results. Moreover, the performance parameters such as bandwidth, gain, operational frequency, and the number of FSS layers used in the proposed antenna are compared with existing literature to show the significance of the proposed work. Overall, the proposed antenna is easy to fabricate and has a low profile and simple geometry with a compact size while offering a very wide bandwidth and high gain. Due to all of its performance properties, the proposed antenna system is a strong candidate for upcoming wideband and high-gain applications. Full article
(This article belongs to the Special Issue State-of-the-Art Antenna Technology for Wireless Communication System)
Show Figures

Figure 1

15 pages, 6127 KiB  
Article
Design and Analysis of Circular Polarized Two-Port MIMO Antennas with Various Antenna Element Orientations
by Fatma Taher, Hussam Al Hamadi, Mohammed S. Alzaidi, Hesham Alhumyani, Dalia H. Elkamchouchi, Yasser H. Elkamshoushy, Mohammad T. Haweel, Mohamed Fathy Abo Sree and Sara Yehia Abdel Fatah
Micromachines 2023, 14(2), 380; https://doi.org/10.3390/mi14020380 - 3 Feb 2023
Cited by 33 | Viewed by 3752
Abstract
This article presents the circularly polarized antenna operating over 28 GHz mm-wave applications. The suggested antenna has compact size, simple geometry, wideband, high gain, and offers circular polarization. Afterward, two-port MIMO antenna are designed to get Left Hand Circular Polarization (LHCP) and Right-Hand [...] Read more.
This article presents the circularly polarized antenna operating over 28 GHz mm-wave applications. The suggested antenna has compact size, simple geometry, wideband, high gain, and offers circular polarization. Afterward, two-port MIMO antenna are designed to get Left Hand Circular Polarization (LHCP) and Right-Hand Circular Polarization (RHCP). Four different cases are adopted to construct two-port MIMO antenna of suggested antenna. In case 1, both of the elements are placed parallel to each other; in the second case, the element is parallel but the radiating patch of second antenna element are rotated by 180°. In the third case, the second antenna element is placed orthogonally to the first antenna element. In the final case, the antenna is parallel but placed in the opposite end of substrate material. The S-parameters, axial ratio bandwidth (ARBW) gain, and radiation efficiency are studied and compared in all these cases. The two MIMO systems of all cases are designed by using Roger RT/Duroid 6002 with thickness of 0.79 mm. The overall size of two-port MIMO antennas is 20.5 mm × 12 mm × 0.79 mm. The MIMO configuration of the suggested CP antenna offers wideband, low mutual coupling, wide ARBW, high gain, and high radiation efficiency. The hardware prototype of all cases is fabricated to verify the predicated results. Moreover, the comparison of suggested two-port MIMO antenna is also performed with already published work, which show the quality of suggested work in terms of various performance parameters over them. Full article
(This article belongs to the Special Issue State-of-the-Art Antenna Technology for Wireless Communication System)
Show Figures

Figure 1

15 pages, 5062 KiB  
Article
A Shorted Stub Loaded UWB Flexible Antenna for Small IoT Devices
by Esraa Mousa Ali, Wahaj Abbas Awan, Mohammed S. Alzaidi, Abdullah Alzahrani, Dalia H. Elkamchouchi, Francisco Falcone and Sherif S. M. Ghoneim
Sensors 2023, 23(2), 748; https://doi.org/10.3390/s23020748 - 9 Jan 2023
Cited by 28 | Viewed by 3282
Abstract
In this manuscript, a compact in size yet geometrically simple Ultra-Wideband (UWB) antenna is demonstrated. The flexible-by-nature substrate ROGERS 5880, having a thickness of 0.254 mm, is utilized to design the proposed work. The antenna configuration is an excerpt of a traditional rectangular [...] Read more.
In this manuscript, a compact in size yet geometrically simple Ultra-Wideband (UWB) antenna is demonstrated. The flexible-by-nature substrate ROGERS 5880, having a thickness of 0.254 mm, is utilized to design the proposed work. The antenna configuration is an excerpt of a traditional rectangular monopole antenna resonating at 5 GHz. Initially, a pair of triangular slots are employed to extend the impedance bandwidth of the antenna. In addition, a semi-circular-shaped, short-ended stub is connected at the upper edges of the patch to further increase the operational bandwidth. After optimization, the proposed antenna offers UWB ranging from 2.73–9.68 GHz, covering almost the entire spectrum allocated globally for UWB applications. Further, the antenna offers a compact size of 15 × 20 mm2 that can easily be integrated into small, flexible electronics. The flexibility analysis is done by bending the antenna on both the x and y axes. The antenna offers performance stability in terms of return loss, radiation pattern, and gain for both conformal and non-conformal conditions. Furthermore, the strong comparison between simulated and measured results for both rigid and bent cases of the antenna, along with the performance comparison with the state-of-the-art, makes it a potential candidate for present and future compact-sized flexible devices. Full article
(This article belongs to the Special Issue Antenna Design and Optimization for 5G, 6G, and IoT)
Show Figures

Figure 1

12 pages, 3385 KiB  
Article
A Low-Profile Antenna for On-Body and Off-Body Applications in the Lower and Upper ISM and WLAN Bands
by Esraa Mousa Ali, Wahaj Abbas Awan, Syeda Iffat Naqvi, Mohammed S. Alzaidi, Abdullah Alzahrani, Dalia H. Elkamchouchi, Francisco Falcone and Turki E. A. Alharbi
Sensors 2023, 23(2), 709; https://doi.org/10.3390/s23020709 - 8 Jan 2023
Cited by 21 | Viewed by 4047
Abstract
The article presents a Co-planar Waveguide (CPW) fed antenna of a low-profile, simple geometry, and compact size operating at the dual band for ISM and WLAN applications for 5G communication devices. The antenna has a small size of 30 mm × 18 mm [...] Read more.
The article presents a Co-planar Waveguide (CPW) fed antenna of a low-profile, simple geometry, and compact size operating at the dual band for ISM and WLAN applications for 5G communication devices. The antenna has a small size of 30 mm × 18 mm × 0.79 mm and is realized using Rogers RT/Duroid 5880 substrate. The proposed dual-band antenna contains a CPW feedline along with the triangular patch. Later on, various stubs are loaded to obtain optimal results. The proposed antenna offers a dual band at 2.4 and 5.4 GHz while covering the impedance bandwidths of 2.25–2.8 GHz for ISM and 5.45–5.65 GHz for WLAN applications, respectively. The proposed antenna design is studied and analyzed using the Electromagnetic (EM) High-Frequency Structure Simulator (HFSSv9) tool, and a hardware prototype is fabricated to verify the simulated results. As the antenna is intended for on-body applications, therefore, Specific Absorption Rate (SAR) analysis is carried out to investigate the Electromagnetic effects of the antenna on the human body. Moreover, a comparison between the proposed dual-band antenna and other relevant works in the literature is presented. The results and comparison of the proposed work with other literary works validate that the proposed dual-band antenna is suitable for future 5G devices working in Industrial, Scientific, Medical (ISM), and Wireless Local Area Network (WLAN) bands. Full article
(This article belongs to the Special Issue Recent Trends and Developments in Antennas)
Show Figures

Figure 1

25 pages, 3534 KiB  
Article
Analysis of Challenges and Solutions of IoT in Smart Grids Using AI and Machine Learning Techniques: A Review
by Tehseen Mazhar, Hafiz Muhammad Irfan, Inayatul Haq, Inam Ullah, Madiha Ashraf, Tamara Al Shloul, Yazeed Yasin Ghadi, Imran and Dalia H. Elkamchouchi
Electronics 2023, 12(1), 242; https://doi.org/10.3390/electronics12010242 - 3 Jan 2023
Cited by 146 | Viewed by 14465
Abstract
With the assistance of machine learning, difficult tasks can be completed entirely on their own. In a smart grid (SG), computers and mobile devices may make it easier to control the interior temperature, monitor security, and perform routine maintenance. The Internet of Things [...] Read more.
With the assistance of machine learning, difficult tasks can be completed entirely on their own. In a smart grid (SG), computers and mobile devices may make it easier to control the interior temperature, monitor security, and perform routine maintenance. The Internet of Things (IoT) is used to connect the various components of smart buildings. As the IoT concept spreads, SGs are being integrated into larger networks. The IoT is an important part of SGs because it provides services that improve everyone’s lives. It has been established that the current life support systems are safe and effective at sustaining life. The primary goal of this research is to determine the motivation for IoT device installation in smart buildings and the grid. From this vantage point, the infrastructure that supports IoT devices and the components that comprise them is critical. The remote configuration of smart grid monitoring systems can improve the security and comfort of building occupants. Sensors are required to operate and monitor everything from consumer electronics to SGs. Network-connected devices should consume less energy and be remotely monitorable. The authors’ goal is to aid in the development of solutions based on AI, IoT, and SGs. Furthermore, the authors investigate networking, machine intelligence, and SG. Finally, we examine research on SG and IoT. Several IoT platform components are subject to debate. The first section of this paper discusses the most common machine learning methods for forecasting building energy demand. The authors then discuss IoT and how it works, in addition to the SG and smart meters, which are required for receiving real-time energy data. Then, we investigate how the various SG, IoT, and ML components integrate and operate using a simple architecture with layers organized into entities that communicate with one another via connections. Full article
(This article belongs to the Special Issue Disruptive Antenna Technologies Making 5G a Reality)
Show Figures

Figure 1

25 pages, 9006 KiB  
Article
Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation
by Kanwalpreet Kour, Deepali Gupta, Kamali Gupta, Divya Anand, Dalia H. Elkamchouchi, Cristina Mazas Pérez-Oleaga, Muhammad Ibrahim and Nitin Goyal
Sensors 2022, 22(22), 8905; https://doi.org/10.3390/s22228905 - 17 Nov 2022
Cited by 35 | Viewed by 5949
Abstract
The world population is on the rise, which demands higher food production. The reduction in the amount of land under cultivation due to urbanization makes this more challenging. The solution to this problem lies in the artificial cultivation of crops. IoT and sensors [...] Read more.
The world population is on the rise, which demands higher food production. The reduction in the amount of land under cultivation due to urbanization makes this more challenging. The solution to this problem lies in the artificial cultivation of crops. IoT and sensors play an important role in optimizing the artificial cultivation of crops. The selection of sensors is important in order to ensure a better quality and yield in an automated artificial environment. There are many challenges involved in selecting sensors due to the highly competitive market. This paper provides a novel approach to sensor selection for saffron cultivation in an IoT-based environment. The crop used in this study is saffron due to the reason that much less research has been conducted on its hydroponic cultivation using sensors and its huge economic impact. A detailed hardware-based framework, the growth cycle of the crop, along with all the sensors, and the block layout used for saffron cultivation in a hydroponic medium are provided. The important parameters for a hydroponic medium, such as the concentration of nutrients and flow rate required, are discussed in detail. This paper is the first of its kind to explain the sensor configurations, performance metrics, and sensor-based saffron cultivation model. The paper discusses different metrics related to the selection, use and role of sensors in different IoT-based saffron cultivation practices. A smart hydroponic setup for saffron cultivation is proposed. The results of the model are evaluated using the AquaCrop simulator. The simulator is used to evaluate the value of performance metrics such as the yield, harvest index, water productivity, and biomass. The values obtained provide better results as compared to natural cultivation. Full article
(This article belongs to the Special Issue Smart Cities: Sensors and IoT)
Show Figures

Figure 1

23 pages, 8378 KiB  
Article
An Enhanced Feed-Forward Back Propagation Levenberg–Marquardt Algorithm for Suspended Sediment Yield Modeling
by Arvind Yadav, Premkumar Chithaluru, Aman Singh, Devendra Joshi, Dalia H. Elkamchouchi, Cristina Mazas Pérez-Oleaga and Divya Anand
Water 2022, 14(22), 3714; https://doi.org/10.3390/w14223714 - 16 Nov 2022
Cited by 17 | Viewed by 3046 | Correction
Abstract
Rivers are dynamic geological agents on the earth which transport the weathered materials of the continent to the sea. Estimation of suspended sediment yield (SSY) is essential for management, planning, and designing in any river basin system. Estimation of SSY is critical due [...] Read more.
Rivers are dynamic geological agents on the earth which transport the weathered materials of the continent to the sea. Estimation of suspended sediment yield (SSY) is essential for management, planning, and designing in any river basin system. Estimation of SSY is critical due to its complex nonlinear processes, which are not captured by conventional regression methods. Rainfall, temperature, water discharge, SSY, rock type, relief, and catchment area data of 11 gauging stations were utilized to develop robust artificial intelligence (AI), similar to an artificial-neural-network (ANN)-based model for SSY prediction. The developed highly generalized global single ANN model using a large amount of data was applied at individual gauging stations for SSY prediction in the Mahanadi River basin, which is one of India’s largest peninsular rivers. It appeared that the proposed ANN model had the lowest root-mean-squared error (0.0089) and mean absolute error (0.0029) along with the highest coefficient of correlation (0.867) values among all comparative models (sediment rating curve and multiple linear regression). The ANN provided the best accuracy at Tikarapara among all stations. The ANN model was the most suitable substitute over other comparative models for SSY prediction. It was also noticed that the developed ANN model using the combined data of eleven stations performed better at Tikarapara than the other ANN which was developed using data from Tikarapara only. These approaches are suggested for SSY prediction in river basin systems due to their ease of implementation and better performance. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

14 pages, 6268 KiB  
Article
Isolation Improvement of Parasitic Element-Loaded Dual-Band MIMO Antenna for Mm-Wave Applications
by Musa Hussain, Wahaj Abbas Awan, Esraa Musa Ali, Mohammed S. Alzaidi, Mohammad Alsharef, Dalia H. Elkamchouchi, Abdullah Alzahrani and Mohamed Fathy Abo Sree
Micromachines 2022, 13(11), 1918; https://doi.org/10.3390/mi13111918 - 6 Nov 2022
Cited by 71 | Viewed by 3744
Abstract
A dual-band, compact, high-gain, simple geometry, wideband antenna for 5G millimeter-wave applications at 28 and 38 GHz is proposed in this paper. Initially, an antenna operating over dual bands of 28 and 38 GHz was designed. Later, a four-port Multiple Input Multiple Output [...] Read more.
A dual-band, compact, high-gain, simple geometry, wideband antenna for 5G millimeter-wave applications at 28 and 38 GHz is proposed in this paper. Initially, an antenna operating over dual bands of 28 and 38 GHz was designed. Later, a four-port Multiple Input Multiple Output (MIMO) antenna was developed for the same dual-band applications for high data rates, low latency, and improved capacity for 5G communication devices. To bring down mutual coupling between antenna elements, a parasitic element of simple geometry was loaded between the MIMO elements. After the insertion of the parasitic element, the isolation of the antenna improved by 25 dB. The suggested creation was designed using a Rogers/Duroid RT-5870 laminate with a thickness of 0.79 mm. The single element proposed has an overall small size of 13 mm × 15 mm, while the MIMO configuration of the proposed work has a miniaturized size of 28 mm × 28 mm. The parasitic element-loaded MIMO antenna offers a high gain of 9.5 and 11.5 dB at resonance frequencies of 28 GHz and 38 GHz, respectively. Various MIMO parameters were also examined, and the results generated by the EM tool CST Studio Suite® and hardware prototype are presented. The parasitic element-loaded MIMO antenna offers an Envelop Correlation Coefficient (ECC) < 0.001 and Channel Capacity Loss (CCL) < 0.01 bps/Hz, which are quite good values. Moreover, a comparison with existing work in the literature is given to show the superiority of the MIMO antenna. The suggested MIMO antenna provides good results and is regarded as a solid candidate for future 5G applications according to the comparison with the state of the art, results, and discussion. Full article
(This article belongs to the Special Issue State-of-the-Art Antenna Technology for Wireless Communication System)
Show Figures

Figure 1

22 pages, 3585 KiB  
Article
An Optimized Open Pit Mine Application for Limestone Quarry Production Scheduling to Maximize Net Present Value
by Devendra Joshi, Premkumar Chithaluru, Aman Singh, Arvind Yadav, Dalia H. Elkamchouchi, Jose Breñosa and Divya Anand
Mathematics 2022, 10(21), 4140; https://doi.org/10.3390/math10214140 - 6 Nov 2022
Cited by 14 | Viewed by 4846
Abstract
This study involves a working limestone mine that supplies limestone to the cement factory. The two main goals of this paper are to (a) determine how long an operating mine can continue to provide the cement plant with the quality and quantity of [...] Read more.
This study involves a working limestone mine that supplies limestone to the cement factory. The two main goals of this paper are to (a) determine how long an operating mine can continue to provide the cement plant with the quality and quantity of materials it needs, and (b) explore the viability of combining some limestone from a nearby mine with the study mine limestone to meet the cement plant’s quality and quantity goals. These objectives are accomplished by figuring out the maximum net profit for the ultimate pit limit and production sequencing of the mining blocks. The issues were resolved using a branch-and-cut based sequential integer and mixed integer programming problem. The study mine can exclusively feed the cement plant for up to 15 years, according to the data. However, it was also noted that the addition of the limestone from the neighboring mine substantially increased the mine’s life (85 years). The findings also showed that, when compared with the production planning formulation that the company is now using, the proposed approach creates 10% more profit. The suggested method also aids in determining the desired desirable quality of the limestone that will be transported from the nearby mine throughout each production stage. Full article
Show Figures

Figure 1

18 pages, 6289 KiB  
Article
Manta Ray Foraging Optimization with Transfer Learning Driven Facial Emotion Recognition
by Anwer Mustafa Hilal, Dalia H. Elkamchouchi, Saud S. Alotaibi, Mohammed Maray, Mahmoud Othman, Amgad Atta Abdelmageed, Abu Sarwar Zamani and Mohamed I. Eldesouki
Sustainability 2022, 14(21), 14308; https://doi.org/10.3390/su142114308 - 2 Nov 2022
Cited by 10 | Viewed by 2353
Abstract
Recently, facial expression-based emotion recognition techniques obtained excellent outcomes in several real-time applications such as healthcare, surveillance, etc. Machine-learning (ML) and deep-learning (DL) approaches can be widely employed for facial image analysis and emotion recognition problems. Therefore, this study develops a Transfer Learning [...] Read more.
Recently, facial expression-based emotion recognition techniques obtained excellent outcomes in several real-time applications such as healthcare, surveillance, etc. Machine-learning (ML) and deep-learning (DL) approaches can be widely employed for facial image analysis and emotion recognition problems. Therefore, this study develops a Transfer Learning Driven Facial Emotion Recognition for Advanced Driver Assistance System (TLDFER-ADAS) technique. The TLDFER-ADAS technique helps proper driving and determines the different types of drivers’ emotions. The TLDFER-ADAS technique initially performs contrast enhancement procedures to enhance image quality. In the TLDFER-ADAS technique, the Xception model was applied to derive feature vectors. For driver emotion classification, manta ray foraging optimization (MRFO) with the quantum dot neural network (QDNN) model was exploited in this work. The experimental result analysis of the TLDFER-ADAS technique was performed on FER-2013 and CK+ datasets. The comparison study demonstrated the promising performance of the proposed model, with maximum accuracy of 99.31% and 99.29% on FER-2013 and CK+ datasets, respectively. Full article
Show Figures

Figure 1

14 pages, 4149 KiB  
Article
A Low Profile Ultra-Wideband Antenna with Reconfigurable Notch Band Characteristics for Smart Electronic Systems
by Abir Zaidi, Wahaj Abbas Awan, Adnan Ghaffar, Mohammed S. Alzaidi, Mohammad Alsharef, Dalia H. Elkamchouchi, Sherif S. M. Ghoneim and Turki E. A. Alharbi
Micromachines 2022, 13(11), 1803; https://doi.org/10.3390/mi13111803 - 22 Oct 2022
Cited by 24 | Viewed by 3570
Abstract
This study describes the design and implementation of a small printed ultra-wideband (UWB) antenna for smart electronic systems with on-demand adjustable notching properties. A contiguous sub-band between 3–4.1 GHz, 4.45–6.5 GHz, or for both bands concurrently, can be mitigated by the antenna. Numerous [...] Read more.
This study describes the design and implementation of a small printed ultra-wideband (UWB) antenna for smart electronic systems with on-demand adjustable notching properties. A contiguous sub-band between 3–4.1 GHz, 4.45–6.5 GHz, or for both bands concurrently, can be mitigated by the antenna. Numerous technologies and applications, including WiMAX, Wi-Fi, ISMA, WLAN, and sub-6 GHz, primarily utilize these band segments remitted by the UWB. The upper notch band is implemented by inserting an open-ended stub with the partial ground plane; the lower notch band functionality is obtained by etching a U-shaped slot from the radiating structure. The basic UWB mode is then changed to a UWB mode, with a single or dual notch band, using two diodes to achieve reconfigurability. The antenna has a physically compact size of 17 × 23 mm2 and a quasi-omnidirectional maximum gain of 4.9 dBi, along with a high efficiency of more than 80%, according to both simulation and measurement data. A significant bandwidth in the UWB region is also demonstrated by the proposed design, with a fractional bandwidth of 180% in relation to the 5.2 GHz center frequency. Regarding compactness, consistent gain, and programmable notch features, the proposed antenna outperforms the antennas described in the literature. In addition to these benefits, the antenna’s compact size makes it simple to incorporate into small electronic devices and enables producers to build many antennas without complications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

Back to TopTop