
Citation: Mazhar, T.; Irfan, H.M.;

Haq, I.; Ullah, I.; Ashraf, M.; Shloul,

T.A.; Ghadi, Y.Y.; Imran;

Elkamchouchi, D.H. Analysis of

Challenges and Solutions of IoT in

Smart Grids Using AI and Machine

Learning Techniques: A Review.

Electronics 2023, 12, 242. https://

doi.org/10.3390/electronics12010242

Academic Editors: Syed Muzahir

Abbas and Muhammad Ali

Babar Abbasi

Received: 26 November 2022

Revised: 23 December 2022

Accepted: 26 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Analysis of Challenges and Solutions of IoT in Smart Grids
Using AI and Machine Learning Techniques: A Review
Tehseen Mazhar 1 , Hafiz Muhammad Irfan 2, Inayatul Haq 3 , Inam Ullah 4,*, Madiha Ashraf 5,
Tamara Al Shloul 6, Yazeed Yasin Ghadi 7 , Imran 8 and Dalia H. Elkamchouchi 9

1 Department of Computer Science, Virtual University of Pakistan, Lahore 51000, Pakistan
2 Department of Computer Science, Islamia University Bahawalpur, Bahawalnagar 62300, Pakistan
3 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
4 BK21 Chungbuk Information Technology Education and Research Center, Chungbuk National University,

Cheongju 28644, Republic of Korea
5 Department of Computer Science, NCBA&E Multan Campus, University in Multan, Multan 60650, Pakistan
6 Liwa College of Technology, Department of General Education,

Abu Dhabi P.O. Box 41009, United Arab Emirates
7 Department of Computer Science, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
8 Department of Biomedical Engineering, Gachon University, Incheon 21936, Republic of Korea
9 Department of Information Technology, College of Computer and Information Sciences,

Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
* Correspondence: inam@chungbuk.ac.kr

Abstract: With the assistance of machine learning, difficult tasks can be completed entirely on their
own. In a smart grid (SG), computers and mobile devices may make it easier to control the interior
temperature, monitor security, and perform routine maintenance. The Internet of Things (IoT) is used
to connect the various components of smart buildings. As the IoT concept spreads, SGs are being
integrated into larger networks. The IoT is an important part of SGs because it provides services that
improve everyone’s lives. It has been established that the current life support systems are safe and
effective at sustaining life. The primary goal of this research is to determine the motivation for IoT
device installation in smart buildings and the grid. From this vantage point, the infrastructure that
supports IoT devices and the components that comprise them is critical. The remote configuration
of smart grid monitoring systems can improve the security and comfort of building occupants.
Sensors are required to operate and monitor everything from consumer electronics to SGs. Network-
connected devices should consume less energy and be remotely monitorable. The authors’ goal is to
aid in the development of solutions based on AI, IoT, and SGs. Furthermore, the authors investigate
networking, machine intelligence, and SG. Finally, we examine research on SG and IoT. Several IoT
platform components are subject to debate. The first section of this paper discusses the most common
machine learning methods for forecasting building energy demand. The authors then discuss IoT
and how it works, in addition to the SG and smart meters, which are required for receiving real-time
energy data. Then, we investigate how the various SG, IoT, and ML components integrate and
operate using a simple architecture with layers organized into entities that communicate with one
another via connections.

Keywords: Artificial Intelligence (AI); Internet of Things (IoT); machine learning; Smart Grid (SG);
smart buildings

1. Introduction

The invention of the Internet of Things (IoT) is one of the most significant technological
advances of the 21st century. The IoT is a network of linked hardware, software, and
physical nodes that enables data gathering and distribution. The exchanging of data
amongst multiple infrastructures and devices is referred to as the “IoT” [1]. Without them,
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Internet access is impossible. The Internet Protocol monitors Internet devices. The Internet
allows user-to-user online communication. The networked “things” aspire to provide
everyday objects with the ability to share data and information on their own and at regular
intervals. A structure that uses connected data, technology, and machinery is called an
“intelligent building.” Analytics and automation for controlling essential services, including
HVAC, lighting, heating for safety equipment, and air conditioning HVAC devices with
intelligent controls [2]. It is highly beneficial for HVAC systems to utilize less energy if they
have authorities implemented when energy is in high demand. The problematic parts of
this duty include recognizing and locating defects and minimizing power consumption in
vacant portions of the facility [3].

The integration of renewable energy sources, Smart Grid (SG) management, energy
trading, power system flexibility and negative pricing, energy management, arbitrage
and pricing, and SG financial transactions are some recommendations for enhancing the
performance of SG block chain technology and cryptocurrencies may lead to a flatter load
profile and economic advantage. In addition, previous researchers [make changes to the
block chain’s algorithms so that communities of online users may use Bitcoin to transact
in marketplaces and energy systems using more secure methods [4]. The writers also
use digital money in their energy infrastructure. A longer-term viewpoint may be just as
helpful as a more immediate one when attempting to detect and mitigate possible hazards.
The writers pay little attention to enduring challenges, well-known problems, or feasible
remedies. Using block chain-based digital currencies, participants in the energy industry
must solve security problems if they want to be effective and competitive.

Many more articles are available that cover a wide range of topics that impact all
human cultures. For instance, the essay highlights the issue of global warming, which is
leading to substantial changes in almost every part of the world. In this research, the elec-
trical power utilized by ordinary home appliances is broken down using the Electrical Line
Disaggregation (ELD) method. ELDs today depend on computer science techniques and Ar-
tificial Intelligence (AI). Optimized complete set empirical model decomposition and wave
packet transformation, or OCEEMD-WPT, is also used. This idea was developed to show
how the end user might perceive changes in power-line noise. Consequently, gathering
vital information required for network operation is significantly more effective [5].

Using sensors or smart meters, a power grid might become an SG. These robust sen-
sors transmit a lot of data. This helps understand network behavior and make assumptions.
The vast data required to join and store thousands of IoT nodes makes this impossible [6].
Automatic Encoders (AE) approach encoding data entropy to represent previously com-
pressed content with fewer data. These strategies use AI and deep learning. Until recently,
data spectrum made compression impossible. The suggested data compression method
leverages AE models. Spectral windows improve compression and entropy.

IoT devices and technology may improve SG via real-time monitoring, new pricing
methods, dynamic energy management, and self-healing. Intrusions are more significant in
SG-converted grid components and services. Researchers studied attacker and defender
payoffs using actual devices and honeypots. Both attacked and defended games contain
uncertain NE and Bayesian NE matching conditions. The authors suggested increasing
worst-case outcomes in non-equilibrium circumstances. If the defendant accepts the on-
slaught and gives up, he may submit. Simulations show that both games were balanced
offensively and defensively. Defense recognizes and rewards aggressors. By interacting
with a certain number of actual devices and honeypots, previous research looked at how
an attacker and defense may cooperate to maximize their payoffs [7].

SGs use automation, sensors, and remote controls to increase comfort, security, and
energy efficiency. IoT sensors monitor “smart” construction elements. This knowledge
can enhance interiors. IoT-based “SG’s,” which monitor a building’s temperature, security,
and maintenance, are made more accessible by smartphones and tablets. The IoT’s ability
to link many sensors allows it to collect and analyze data in real time, leading to more
innovative and user-friendly buildings [8]. For SGs, fire alarms are essential. A smart IoT
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fire alarm system is required to prevent property damage and save lives. Weka and J48
are used; previous research demonstrated energy-use patterns and behaviors. These were
then categorized according to how much energy they used [9]. With machine learning
and big data for the home, the HEMS-IoT smart energy management system lowers the
home’s overall energy consumption while ensuring the comfort and security of its residents.
The system relies heavily on machine learning and large amounts of data to analyze and
categorize how effectively energy is utilized, identify trends in human behavior, and
maintain a high degree of comfort for building occupants [10]. The authors investigated
many security holes in IoT software. The following survey was used to find workable
security solutions. Previous researchers outlined a process for creating web services and
apps for SGs using the IoT as an example [11]. Another research team developed an
innovative structure employing mobile applications and open-source server software. This
proves that intelligent buildings can be created using the IoT [12]. They built a method
to implement their device management approach using relays and a low-cost Arduino
microcontroller board. The purchase comes with an Android application that the customer
may use to access the intelligent system. Using machine learning methods, a previous study
provided an overview of how a large-scale IoT deployment may be accomplished [13].
These technologies and application areas are projected to dominate IoT research in the
following years. The authors of used machine learning methods to create an intelligent
controller for HVAC systems in homes and businesses. When confronted with resource
allocation problems, IoT networks must make judgments according to the circumstance
and context, as detailed in. Machine learning models can adapt to changing environmental
conditions in real time, providing them with an advantage over optimization heuristics,
game theory, and other methodologies [14]. Self-adjusting models can retrain. Machine
learning can analyze and decide on resources in complex, dynamic, globally dispersed
IoT systems. Urban regions are adopting smart grids, sensor appliances, and building
management systems. The research examines the IoT and SGs. AI and IoT may affect
businesses and jobs. AI protects computers, networks, and IoT devices that can mimic
human brain processes and make decisions, enabling IoT [15].

We explored various subjects, including AI, IoT, and smart structures. The articles that
helped us decide are mentioned in the following paragraphs for convenience. According
to the IoT links various high-tech devices, including smartphones, sensors, and other
types of cutting-edge technology [16]. These gadgets can interact with one another and
exchange information. By connecting already online devices, the IoT is a system that enables
inanimate things in the real world to interact and share data. According to the authors,
there are several areas where the IoT may be employed, including agriculture, the military,
home appliances, and personal healthcare [11]. These are a few of the many uses of the
IoT to provide and maintain ubiquitous connection, real-time applications, and solutions
to transportation system demands. A previous study offers a novel architecture based on
machine learning and IoT capabilities. Figure 1 depicts a graphical representation of all the
sections of this paper, and Table 1 show a list of abbreviations used in the manuscript [17].

Table 1. List of abbreviations.

Abbreviations Full Form

IoT Internet of Things
AI Artificial intelligence
SG Smart grid
SB Smart buildings
HVAC Heating, ventilation, and air conditioning
ELD Electrical Line Disintegration

OCEEMD-WPT Optimized complete set empirical model decomposition and
wave packet transformation

AE Automatic Encoders
NE Network
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Table 1. Cont.

Abbreviations Full Form

HEMS Home energy management system
PC Personal computer
IETF Internet Engineering Task Force
ROC Receiver Operating Characteristic
V2V Vehicle-to-vehicle
LPWAN Low-power wide area networks
LTE Long-Term Evolution
Ml Machine learning
SGMS Smart grid management system
CR AMI Capability requirement for Advanced Metering Infrastructure
EVD External ventricular drain
RPL Routing Protocol for Low-Power and Lossy Networks
PMU Phasor measurement unit
CAMS Comprehensive area monitoring system
SCADA Supervisory control and data acquisition
IED An intelligent electronic device
HAN Home-area network
WAN Wide-area network
FIDO2 Password-less authentication
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The remainder of this paper is organized as follows. Section 2 describes the related
work in detail, and Section 3 discusses the methodology, in which research questions,
exclusion and inclusion of AI, and data mining techniques are discussed. Section 4 discusses
the results of the research questions, and Section 5 concludes the work.

2. Literature Review

Including full-duplex or bidirectional contacts is the subject of further research [18].
The research-recommended interactions increase network asset management. Both money
and time are spent on administration and upkeep. Intelligent real-time monitoring is
vital yet complex. The authors recommend starting with electrical system basics. AI
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can recognize incomplete discharges, which are hazardous to the system. Smart sensors
throughout the SG can monitor partial discharges and grid sections. Real-time sensor
assessment ensures network performance.

One of the many demands that today’s customers have of businesses is maintaining
the privacy of sensitive information sent across electrical networks. The IoT is a system of
interconnected, high-tech gadgets that can communicate, share information, and control
one another. The sensitivity and energy consumption of the data must be disclosed to
higher-layer applications through the IoT networks. We could control how much power
each request and program used if we were aware of this. The administration should
happen quickly if the device creates consumption profiles for each user and monitors
regular usage. Malicious software, such as a virus, or a system failure may threaten these
profiles. In this article, two computers perform identical tasks in the same order across
time. The experiment’s results are noteworthy since one PC carries a virus [19]. The
research discovered that energy consumption rises when a computer performs duplicate or
unreliable tasks.

To better comprehend how to handle outlier data, this was undertaken using data-
driven analytics, data mining, and information security technologies. They examine how
outlier mining and denial are used in an SG setting, and conclude that operational security
and power system reliability are the biggest obstacles to intelligent energy management [20].

Many tiny devices are included in different IoT systems. The numerous problems
with low-power, lossy networks (LLNs) are partly due to the devices’ limited capabilities.
Routing over IPv6 is made possible via the RPL protocol. The Internet Engineering Task
Force (IETF) created it as a simple, global networking standard for resolving resource-
related concerns such as congestion. The RPL uses objective functions to decide the best
way to proceed. The best possible parents are chosen by the OFs while choosing a path.
The metrics that were used to build the OF must be carefully chosen in order to find the
route that meets all requirements. The different node metrics that can be used in RPL OFs
are listed, along with details on how to calculate them [21]. To stop or lessen assaults on
the network control system’s integrity, availability, and confidentiality, it must be protected.
If these assaults are not stopped or neutralized, they might harm the economy, human life,
and public health. The author then proposes a systematic strategy for mitigating controls
by examining recent and impending cyber-attacks against SGs.

Using sensors and technology from the IoT, an SG may be able to set up real-time
monitoring, complicated pricing schemes, dynamic power management, and self-healing
features. However, switching from a regular grid to an SG puts the grid’s parts and services
at risk of cyber-attacks. By interacting with one another, assaults and defenses may be
strengthened [7]. The benefits for the attacker and victim are enhanced with real devices
and honeypots. The authors devised the Nash Equilibrium (NE) and Bayesian NE since the
attacker’s reward was uncertain. The non-equilibrium design is presented. The defender
may accept a phony equilibrium—balanced attack and defense simulations if the attacker
shoots low. Logic chooses the best attacker.

We created an intelligent system for the lab that provides real-time monitoring and
management of a range of innovative home equipment using a free and open-source IoT
platform [17]. Every room has sensors and cameras to monitor occupants’ daily routines,
lighting, temperature, and activity levels. If the data surpasses the threshold, homeowners
will receive an email or text message telling them to make interior improvements. The
AI is trained to identify unexpected events. Recent advances in big data analytics, sensor
technology, machine learning (ML), and the IoT may make SGs affordable. Minimal effort
is needed to make minor infrastructure changes [22]. This paradigm is proposed as a
workable solution in. We can find significant clinical indicators that might indicate the
existence of heart illness using Receiver Operating Characteristic (ROC) analysis and a
three-tier expandable architecture based on the IoT [23].

Using “smart lighting” reduces the need for unnecessary artificial light by using natu-
ral light and improving functionality in areas such as occupancy detection and dimming.
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Increasingly, dim lighting conditions are becoming the norm in public places. Companies
that employ step and continuous dimmer control may make money using demand-response
systems [24]. The many configuration possibilities of lighting control systems allow for
comprehensive remote control of intelligent lighting systems. Due to lighting manage-
ment features, customers now have access to web-based dashboards for controlling lights,
and the usage of wireless controllers makes retrofit deployment easier. IoT-based smart
buildings and grid systems are presented in Figure 2.
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2.1. Parts of IoT-Based Devices

A network of interconnected electronic devices known as the IoT collects and dis-
tributes data about human users to promote improved communication, coordination, and
cooperation. An open and compatible collection of technologies and protocols known
as the IoT enables the Internet connectivity of commonplace devices. An IoT platform
might be used to build a network of sensors. After examining the data, it has acquired, the
network chooses the best results [26]. The IoT technology is anticipated to have a wide
range of future applications. These applications include detection systems, and location,
cloud, and communication technologies.

2.1.1. Cloud Infrastructure

Regarding IoT services such as Vehicle-to-Vehicle (V2V) connections, real-time health
monitoring, and commercial IoT, cloud infrastructure is even more important than com-
puter services [27]. To make plans, people are increasingly using their mobile devices.
With the help of intelligent device scheduling, it is possible to keep customers’ devices
functioning correctly while also saving money and using less energy overall. This is done
without diminishing the product’s usability for the consumer. By taking into account both
the preferences of the users and the data gathered from other sources, the energy man-
agement system organizes the usage of the devices mentioned above in the most effective
way possible [28].

2.1.2. Network Model

SG IoT connection is anticipated to be impacted by cellular-based technologies that
will provide low-power wide area networks in the coming years (LPWAN). This effect
will be developed gradually. LPWANs use less power and may support more devices.
IoT enables several protocols to communicate between related items and the cloud. LTE
and LoRA WAN are used in these strategies. These networks can operate over a sub-
stantially more comprehensive working range and at data transmission rates that are
noticeably quicker [29].
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2.1.3. IoT Gateways

A gateway’s primary role in communications is to serve as a connecting point for
various communication systems. Different systems may differ in their communication
interfaces, protocols, and choices [30].

2.1.4. IoT Sensors

The server stores and makes accessible all sensor data. Examining the building’s
workloads may reveal energy utilization trends. Electricity utilization should be reduced.
This development will help locals and guests [31]. The fundamental components that must
be present to realize a fully functional IoT setup are shown in Figure 3.
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Computers and mobile devices may be used in “smart” buildings to monitor tempera-
ture more efficiently, control security, and perform maintenance. SG uses IoT to coordinate
building activities. Building management systems, IoT sensors, AI, and machine learning
are all used in intelligent buildings. A few such potential technologies include AI and ML.

2.1.5. SGMS

Building automation and management systems, or SGMS for short, are required to
accurately keep track of the amount of energy used in residential, commercial, and in-
dustrial buildings [33]. These devices are called “building energy management systems”
in certain localities. A building is considered to have “smart” qualities when automa-
tion, sensors, and other remote elements are used to improve the effectiveness of build-
ing administration, the level of tenant contentment, and the expenses associated with
building maintenance.

2.1.6. Advances in Power Line Communication Technology

IoT technology may enhance and optimize electrical network computational models,
which now contain user data and energy provider prices. The IoT can optimize com-
putational models. Corrections might increase latency and network noise. This article
includes customer/supplier and smart meter data. The authors investigated the complexity,
subtleties, speed, and correctness of statistical amalgamation [34]. First, this paper looks at
the issues caused by corrupted data disseminated across the network as a direct result of
transmission, quantification, and even basic consumption measurement errors.

The bandwidth requirements of SG are satisfied by BPLC. PLC. simulation coverage is
excellent in NS-3. To repeat prior actions, this system examines several factors. A line’s
capacity for power and data is shown via NS-3 simulations. With the aid of UDP/IP, we
could match substation output for an application-layer transmission rate. Coupling, climate,
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and cable age cannot be simulated. PLC. technology allows sophisticated simulation tools
for end devices [35].

Green-RPL is a low-energy, loss-routing protocol for the CR-AMI network [36]. Es-
timated EVD influences the priority of packet routing. The least expensive technique is
possible because the most energy-efficient node is transferred. While doing all this, the
utility needs of SG and secondary consumers are met. An overview of the SG communi-
cation infrastructure is presented in Figure 3. Intelligent data collection devices and data
communication techniques in SG are shown in Table 2, and the types of networks and their
functions are shown in Table 3.

Table 2. Intelligent data collection devices and data communication techniques in SGs [37].

Intelligent Device Technology Application

Advanced metering
infrastructure (AMI)

Customers and the utilities that provide them may
develop two-way communication via data
management systems, communication networks, and
smart meters.

Power quality monitoring, on-site
management, and remote meter setup

Phasor measurement
unit (PMU)

A single-time reference is used to synchronize the
findings of many distant sites taking real-time
measurements at a pace of 30 to 60 samples
per second.

The measurement of electrical waves
using the power grid

Comprehensive area
monitoring system (WAMS)

An application server processes the data that
PMUs acquire. Grid stability under dynamic load

Supervisory control and
data acquisition (SCADA) Both manually and automatically, respectively Monitoring of the system, processing of

events, and alarming

An intelligent electronic
device (IED)

Monitoring and documenting the substation and its
incoming and outgoing feeds for any signs of wear
and tear

The combination of many different types
of relay protection with the recording and
monitoring of measurements

Table 3. Types of networks and their functions.

Type of Network Function Characteristic

H.A.N. Integrating smart appliances with smart home
and office devices to control local energy

Use only at home or in businesses; prolonged data transfer
rate (less than 1 Kbps)

NAN
Data about energy usage are gathered and
stored at the load data center, which is made
up of many HANS (LDC)

Up to 2 Kbps per second is installed within
a few kilometers

WAN Facilitating communication between
components of the intelligent grid

Designed for usage over short distances of tens of
kilometers or less, and when employed under such
conditions, capable of data transfer at many gigabits
per second.

Machines may communicate without human involvement using IoT technologies.
IoT devices are frequently connected by networks. Because it uses protocols across many
network layers, the IoT is successful. A popular choice for network layer routing protocols
is the Routing Protocol for Low-Power and Lossy Networks. The proper operation of RPL
depends on the existence of the flowing timer mechanism. The setting of the algorithm
is directly responsible for the delay in receiving control signals. The trickling algorithm’s
nodes periodically do nothing but listen. Due to delay and uneven load distribution among
the nodes, by allowing the trickling timer mechanism to vary based on the number of hops,
the Elastic Hop Count Trickle Timer Algorithm was proposed and offered a novel solution
to the problems with the existing method. Experimental simulations were performed in
a virtual environment using the Contiki Cooja 3.0 simulator to understand better how
RPL with a dynamic trickle timer technique function in the real world. The proposed
trickling approach uses less energy, converges more quickly, and sends more packets than
the traditional trickling method, the dynamic algorithm, and the e-trickle algorithm [38].
Types of networks and their functions are shown in Table 3.
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2.1.7. Short-Term Memory Network

Smart home technologies need more adaptive energy billing and invoicing techniques.
The network must expand to meet user problems and adapt to changing situations. The
work invented Grid-to-Go to extend S methods. New algorithms face new challenges,
especially regarding network data privacy and security [39]. The P4G2Go algorithm is a
natural evolution of current systems; it ensures users’ and providers’ data privacy. This
strategy safeguards end-user data by banning connections using anonymous credentials.
MASKER and FIDO2 are incorporated to boost the algorithm’s security since they do
not need sophisticated authentication or a password. They are excellent candidates for
the algorithm. It is monitoring that alternative energy development aids communication
and information processing. Green energy requires better Wi-Fi. Wi-Fi networks should
be star-shaped. All children have one parent. Since secondary nodes need more power,
constant connections are insecure, which are constraints on utilizing Blockchain to develop
smart wireless networks. Distributed ledgers govern consumer behavior. Web-visibility
Blockchain doubles transaction efficiency [40].

2.1.8. Energy Storage and Power Electronics Technologies

Due to inconsistencies in addressing integration criteria (such as standardization, reac-
tion speed, and security) of power substations to SGs, standard communication protocols
between grid devices may be challenging to integrate. Integrating these protocols may be
challenging due to incompatibilities. Every upgrade necessitates an expensive review of
integration needs. The use of a ZigBee sink node as a protocol link is suggested by [41]. The
sensor node of each electrical device runs middleware. With the help of this middleware,
SG devices may use PSCC data. Interoperability testing is accelerated and secured by
power meters (SG elements) linked to sensor nodes. Experiments demonstrate the rapid
setup of every new sensor.

Singapore needs microgrids. Nature may damage renewable energy sources. An
SG needs microgrids. Molina stores and conditions energy to control it. This ensures the
SG power, storage capacity, cost, applications, environmental effect, and longevity are
graded for mechanical, electrical, electro-chemical, chemical, and thermal power systems.
Alternatives can be considered. Each application must be assessed since none of these
technologies meets the SG’s needs. Companies may save money by minimizing remodel-
ing expenses, integrating renewable energy sources into the system, reducing emissions,
enhancing energy security, reducing import dependence, and avoiding power outages.
Upgrade expenses are reduced [42].

In their blueprint for a smart city, the hierarchy of control for a grid of micro grids, the
installation of artificial dynamic limits based on self-adequacy criteria, and the existing
arrangement of power-producing features. According to the authors, these developments
will boost renewable and sustainable energy sources; raise power quality, system security,
stability, and resilience; combine many energy providers into energy hubs; and lower end
users’ energy expenditures [43] According to the hypothesis of the authors, the integration
of a self-healing SG in contemporary and future urban settings is now feasible.

Six challenges to the transition to the SG are examined They then call for further
study to create safe, effective SGs. This helps in resolving the problems with the energy
market [44].

3. Methods and Techniques
3.1. Integration of IoT with Machine Learning to Create Smart Grid

In the subsections that follow, the most popular machine learning algorithms that,
when paired with IoT, may make SG as energy-efficient as feasible are detailed. Integrat-
ing IoT Technology and machine learning into SG increases energy efficiency, which is
presented in Figure 4.
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3.2. Exclusion and Inclusion

A keyword-based string comprising machine learning approaches and IoT was used
to search the papers in various databases, including IEEE, Springer, Scopus, Google Scholar,
A.C.M., Science Direct, and Wiley. Those selected papers discussed machine learning
classification, SG security, and integration with IoT, and are published in the journals above.
After the initial selection of papers, those papers were reviewed. The papers focused on
machine learning-based approaches were then identified and included in this research to
learn the foundation of machine learning and its SG security. All other papers taken from
the initial search were excluded. We included only selective papers in the review selection
as the aim was to obtain the baseline of machine learning approaches and research gaps to
continue the study. All other papers were excluded from the review.

Research Question

The research questions are given below:

1. What machine learning methods are used in SG?
2. What is the role of the machine learning methods in SG (critical analysis)?
3. What are the challenges in IoT-enabled SGs?

3.3. AI-Based Approaches in Smart Grids

If a structure has automated control systems that utilize data to improve the design’s
efficiency and the degree of comfort its occupants feel, it is said to be “smart.” The levels of
resident enjoyment, operational efficiency, and asset utilization may significantly increase
due to the integration of AI into structures and devices linked to the IoT [46]. It allows the
autonomous integration of surplus data from the IoT sensors and occupant behavior into
building systems to produce information, optimize operations, and improve environmental
efficiency. These objectives may be achieved by increasing environmental effectiveness,
streamlining processes, and discovering new information.

3.4. Machine Learning in Smart Grid

Non-technical losses can be estimated, and smart meter data can be transformed into
graphics with fewer mistakes or missing data. This confirms the data. Image analysis
employs a neural network design for computer vision. The semi-supervised picture ap-
plication of this approach facilitates the detection and classification of anomalies. This
exposes SG’s power abnormalities. This concept uses NTL detection to gather electrical
magnitudes, technical characteristics, measurement quality, and GIS. data from SGs [47].

A previous study suggested employing a spectrum-aggregation-based MAC approach
to boost CRSN throughput to alleviate the poor wireless conditions in SG The SACRB-
MAC moniker was assigned to this protocol (Aggregation Cognitive Receiver-Based MAC).
Additionally, SACRB-MAC contributes to enhancing the dependability of CRSNs using
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the broadcast capabilities of the wireless medium. The simulations and analyses show that
SACRB-MAC has a significant capacity and reliable performance, making it an appealing
option for CRSNs to pursue to meet the SGs’ goal [48].

A real-time online control method was devised for distributed ES energy manage-
ment [49]. By sharing and redistributing the capabilities of physical ESs, users can adminis-
ter their own virtual ESs (VESs) without knowing how PESs carry out their duties. This
proposal uses the optimization framework to make choices solely based on the recognition
of the existing conditions of the system rather than attempting to anticipate the future of
energy price, user load, and renewable production [50]. This is done rather than trying
to foresee the end (uncertain system states). The authors updated the offline parameter
selection to maintain user privacy while transmitting data to anybody, allowing users to
control their VESs locally. This was done to enable local VES administration for users. The
authors advise that more work on developing the price control for the ES sharing service
should be performed soon [51].

For the smart phase to succeed, the DSM, where users report app energy use, is essen-
tial. The key is electrical efficiency. SG&HAN supplied safety demand-side management
(process). The DSM-focused SG of the smart phase employs HAN SGs that can adjust
to changing energy requirements. Residential energy usage is managed through HANs.
The smart meters of visitors are controlled and network activity is tracked. New concepts
include the HAN, the housing market, and the “Smart Home.” Demand-side operations
increased HAN connections amongst SG vendors. High-powered gadgets are cleared
quickly depending on the load and cost. Figure 4 depicts the system model for DSM. There
is no business plan. An IoT-enabled DSM was established DSM receivers may encrypt
messages. Human input is used in the SG. HAN uses the final findings. Analysis of trends
enables foresight. A diagrammatic presentation of the DSM system is presented in Figure 5.
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3.5. Data Mining in Smart Grids

High-tech sensors are being used more often for measurement purposes due to the
extensive development of related infrastructure. It is a requirement for companies that sell
electricity to analyze their customers’ usage habits using data science technologies such as
data mining [53] Grouping consumption loads has led to the development of methods for
forecasting the data distribution and, therefore, all the elements that make up the network
load. This is being undertaken to advance consumer-friendly energy-saving technologies
that may be used in SGs. This is being done to develop unique techniques that might be
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used in SGs to benefit all stakeholders involved in the energy industry. This article may
help with load grouping in SGs since it discusses the basic ideas that form its foundation.
These many concepts are organized under the charge classification. The electric charge
may be divided into five distinct levels, with eight of the most crucial validity estimators
present in each group, depending on the grouping method employed [54].

The creation of novel new services for connecting with people who reside in buildings
is made possible by the capacity of the IoT and AI systems to learn new things. These
technologies may contribute to cost savings by automating tasks that often require a large
amount of human labor [55]. AI technology may be used in SGs to enhance automation,
control, and consistency while lowering energy usage. It is possible to examine how
various machine learning techniques are applied in SGs, comparing, and contrasting
each. Many facilities are using energy management systems powered by AI. Energy
equipment found in smart grids includes diesel generators, wind turbines, solar panels,
thermal energy storage systems, electric energy storage systems, lighting systems, HVAC
systems, window management systems, blind systems, electric vehicles, electric heaters,
gas boilers, and washing machines (WMs) [56]. It is imperative to be simultaneously ready
for such machinery because of its significant effects on society, the environment, and the
economy [57]. Data mining in SGs is presented in Figure 6.
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4. Results
4.1. Artificial Neural Networks (ANNs)

The key objectives of smart grid projects are to reduce overall energy consumption and
to boost both the contentment and comfort levels of building occupants. Smart sensors and
software analyze exterior and internal parameters to provide a straightforward method for
monitoring comfort and safety while simultaneously regulating energy use. It is possible
to teach Artificial Neural Networks (ANN), to recognize and rank the importance of basic
data patterns in a context with several dimensions. Solar energy has been used with ANNs
to estimate the required heating amount [59].The applications of ANN are not limited to
just refrigerators; solar energy, air conditioning, modeling, controlling power production,
load forecasting, and ventilation systems all use the same technology. Refrigerators are
one example of an appliance that can benefit from the applications of ANN. The random
forest model was used to estimate the energy used in houses. The Bayesian regularized
neural network (BRNN) technique was used to anticipate the energy required by various
structures in the future. Real-time monitoring is made possible, for instance, using an ANN
to forecast and foresee the temperature of a specific place inside the building [60]. Energy



Electronics 2023, 12, 242 13 of 25

Plus is software for simulating energy systems. Its numerous potential simulations provide
a plethora of data that may be used to train an ANN model and calculate energy usage [61].
Energy Plus is a piece of software that can be downloaded here [https://energyplus.net/
accessed on 1 December 2022]. The neural network-based optimization approach in SGs is
shown in Figure 7.
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It takes a significant amount of training to acquire the same output from a neural
network, and even if the input is the same, the production can still be different [63]. The
signal includes all the procedures that must be undertaken to analyze the input signal and
produce an estimate of the energy contained within it. Using energy estimates derived
from input signals to guide the following stages in installing hardware- and software-based
SG features is standard practice [64]. A user may dictate voice orders into a mobile phone,
which are then sent to the building’s energy management system through Bluetooth and
Wi-Fi [65] Intelligent buildings may also use mobile phones to receive speech instructions
for managing electrical appliances.

Many protections have been put into place as security risks rise. The best security
tool for finding and following hackers across various network domains is an IDS. The
effectiveness of intrusion detection systems has improved with the use of machine learning
classifiers to identify threats. This work proposes an investigative model for intrusion
detection systems that makes use of a support vector machine-based kernel classifier
and feature selection based on principal component analysis. It examines how support
vector machines are affected by linear, polynomial, and Gaussian radial basis functions,
and Sigmoid kernel functions [66]. The detection accuracy, True Positive, True Negative,
Precision, Sensitivity, and F-measure of the inquiry model are assessed in order to choose
an appropriate kernel function for the SVM. Utilizing information from the KDD Cup’99
and UNSWNB15, the research model was tested and assessed. For both sets of data, the
Gaussian radial basis function kernel outperformed the linear kernel, the polynomial
kernel, and the sigmoid kernel. The UNSW-NB15 dataset’s accuracy varied from 93.94 and
93.23 to 94.44% [67].

4.1.1. Wavelet Neural Network

The ability to accurately predict a building’s energy requirements is fundamental for
efficient energy management and pollution prevention. Issues with VAV temperature, flow,
and pressure sensors may be uncovered using a wavelet neural network. This technique is
used in wavelet transforms and neural networks. Time-series analysis has the potential to
shorten charging times for batteries and save system costs. This is made more accessible by
micro grid dependency prediction. Integrating the two approaches improves accuracy [68].

The authors] promote using a wavelet neural network as a technology to improve the
effectiveness of PID controllers. A PID controller executes both integral and derivative

https://energyplus.net/


Electronics 2023, 12, 242 14 of 25

functions [69]. A cutting-edge control system was constructed by on top of an existing
neural network, having PID as its main component. The system portion responsible for
delivering the required value is the control strategy management component, sometimes
called the “brain” of a closed-loop control system [70]. An intelligent strategic control
approach is necessary to create control logic for SG technologies that can adapt to the most
current environmental circumstances that is, the capacity of SG technology to save energy
and lessen its adverse effects on the environment [71]. The most popular control techniques
include the on/off control, the proportional control, the proportional integral derivative
control, and the proportional/integral control (PI). Frequently, all that is needed to take
control of the building’s lighting and window treatments is to turn on or off a switch.
PI/PID model controllers are often used in HVAC systems to manage temperature and
humidity [72]. This is done for the system to maintain the proper temperature or humidity
level. A neural network PID offers advantageous traits, including self-learning capability
and decoupled dynamic control [73].

Low-power and lossy networks must adopt effective protocols that use few resources
due to the nature of their operation. Multiple low-processing, low-storage, or low-power
devices are linked together by low-power, wide-area networks [74]. Traditional routing
protocols such as Open Shortest Path First do not work well with LLNs because of their
constrained capabilities. The IPv6 Routing Protocol for Low-Power and Lossy Networks
was created to solve these problems. However, it soon became clear that relying on a
single metric for the OF was insufficient to account for the wide range of use scenarios [75].
Based on the research’s conclusions, OFRRT-FUZZY was proposed as an upgrade to OF.
This new and enhanced version makes full use of measurements and fuzzy logic. Both
connection metrics and node metrics are used by OFRRT-FUZZY [76]. By doing this, the
problems caused by using a single measure are avoided. The Received Signal Strength
Indicator (RSSI), Remaining Energy (RE), and throughput are three relevant measurements
(TH). To identify which OF is preferable to OF0 and MHROF, the proposed OFRRT-FUZZY
approach was implemented in the Cooja simulator, and the results were compared [77].

4.1.2. Machine Learning Algorithms

Machine learning techniques such as unsupervised or semi-supervised feature extrac-
tion and hierarchical feature extraction show promise. RNN, CNN, DBM, SAM, and DBN
are some of the most well-known machine learning approaches [78]. Convolutions and
drop-out algorithms are used in deep understanding to rapidly learn from massive dataset.
More data are needed for machine learning than conventional methods. Unsupervised or
semi-supervised feature extraction is an effective machine learning technique [79]. These
approaches include the decision tree, KNN, random forest, SVM, and SVD. Convolutions
and drop-out algorithms are used in machine learning to quickly analyze big datasets.
More data are needed for deep understanding than usual. Machine learning algorithms are
presented in Figure 8.

4.1.3. Time Series Analysis

It is crucial that machine learning places a strong focus on time series prediction.
Dimensionality is a common issue in time series data sets. The non-data-adaptive depic-
tion, model-based depiction, and data-adaptive depiction are three distinct methods of
representation that all aim to reduce the dimensionality of time series [81]. The authors
in developed a time series-based framework for SGs to determine temporal principles
from the measurable machine and human activities [82]. To create a reliable electric load
forecast model, a support vector machine (SVM) was employed in conjunction with fuzzy
time series and universal harmonic search approaches [83]. Building data-driven energy
consumption measurement techniques was examined in [84]. Their research revealed that
retrofitting, energy consumption profiles, and load forecasts are part of data-driven solu-
tions. The most well-known alternative for many applications, such as energy estimates
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and retrofitting solutions, is the ANN model. Because SVM models may be adjusted during
training, they have often been employed for extensive building energy evaluations [85].
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4.1.4. Regression

Finding the desired function using the gathered data is the aim of a regression problem.
It describes the correlation between variables often assessed regarding the accuracy of
the model’s predictions [86]. The three most common types of regression analysis are
linear regression, ordinary least squares regression, and regression analysis. The authors
employed the orthogonal matching pursuit algorithm’s regression technique to identify
the environmental and physical factors that affect the energy efficiency of SGs [87]. This
research sought to determine and assess the effectiveness of regression models in pre-
dicting the energy consumption of commercial buildings. They used data gathered from
actual structures to make empirical comparisons between various models easier. The
researchers found that the regression models performed adequately compared to other,
more complicated ML models [88].

4.1.5. Deep Learning Methods

Because it addresses the problem of making thoughtful judgments in uncertainty,
reinforcement learning is a popular topic in machine learning [89]. Artificial artifacts
may use reinforcement learning to learn from their activities and make accurate predic-
tions. The trial-and-error approach teaches this. Existing methods struggle with real-
time building energy optimization in huge areas. Traditional energy management sys-
tems are less versatile due to deployment limits. Thanks to IoT and computer capacity,
AI is now a fundamental tool for management and optimization [90]. Deep reinforce-
ment learning (DRL) improves SGs energy efficiency [91]. Deep reinforcement learning is
presented in Figure 9.

4.1.6. Decision Tree Classification Algorithm

It helps to choose the machine learning algorithm best suited for the dataset being
used and the issue being addressed since many machine learning algorithms can be used to
build a model. The simplicity of decision trees’ construction may be part of their growing
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popularity [93]. Regression and data classification may both be performed with the use
of decision trees and non-parametric supervised learning. With the help of prediction
models such as decision trees, it may be possible to map many different paths to the desired
outcome. There are many nodes of various types included in the decision trees that are
built. The decision tree’s root node or starting node represents the whole dataset in machine
learning [94]. The junctions at the very tip of the branches are known as leaf nodes. Creating
additional components at the highest level of the decision tree’s leaf node is impossible.
The leaf node of a decision tree is used to represent the conclusion in machine learning,
whereas the inner nodes represent the data qualities]. Decision tree models have a broad
range of uses in smart energy buildings including predicting the likelihood of an outage
and storing data on energy management and consumption [95].

Electronics 2023, 12, x FOR PEER REVIEW 16 of 26 
 

 

ta-driven solutions. The most well-known alternative for many applications, such as en-

ergy estimates and retrofitting solutions, is the ANN model. Because SVM models may 

be adjusted during training, they have often been employed for extensive building en-

ergy evaluations [85]. 

4.1.4. Regression 

Finding the desired function using the gathered data is the aim of a regression 

problem. It describes the correlation between variables often assessed regarding the ac-

curacy of the model’s predictions [86]. The three most common types of regression anal-

ysis are linear regression, ordinary least squares regression, and regression analysis. The 

authors employed the orthogonal matching pursuit algorithm’s regression technique to 

identify the environmental and physical factors that affect the energy efficiency of SGs 

[87]. This research sought to determine and assess the effectiveness of regression models 

in predicting the energy consumption of commercial buildings. They used data gathered 

from actual structures to make empirical comparisons between various models easier. 

The researchers found that the regression models performed adequately compared to 

other, more complicated ML models [88]. 

4.1.5. Deep Learning Methods 

Because it addresses the problem of making thoughtful judgments in uncertainty, 

reinforcement learning is a popular topic in machine learning [89]. Artificial artifacts 

may use reinforcement learning to learn from their activities and make accurate predic-

tions. The trial-and-error approach teaches this. Existing methods struggle with re-

al-time building energy optimization in huge areas. Traditional energy management 

systems are less versatile due to deployment limits. Thanks to IoT and computer capaci-

ty, AI is now a fundamental tool for management and optimization [90]. Deep rein-

forcement learning (DRL) improves SGs energy efficiency [91]. Deep reinforcement 

learning is presented in Figure 9. 

 

Figure 9. Deep reinforcement learning [92]. 

4.1.6. Decision Tree Classification Algorithm 

It helps to choose the machine learning algorithm best suited for the dataset being 

used and the issue being addressed since many machine learning algorithms can be 

used to build a model. The simplicity of decision trees’ construction may be part of their 

growing popularity [93]. Regression and data classification may both be performed with 

the use of decision trees and non-parametric supervised learning. With the help of pre-

diction models such as decision trees, it may be possible to map many different paths to 

the desired outcome. There are many nodes of various types included in the decision 

trees that are built. The decision tree’s root node or starting node represents the whole 

dataset in machine learning [94]. The junctions at the very tip of the branches are known 

Figure 9. Deep reinforcement learning [92].

4.1.7. Genetic Algorithms and Their Use-Cases in Machine Learning

A genetic algorithm (GA) may help in many optimization problems. GAs, or geo-
graphic information systems, may accurately identify large and complex locations. When
creating GAs, a heuristic search method is used [96]. To address issues with search and
optimization, a GA is employed. Evolutionary algorithms, of which this specific one is
a subtype, are used to solve this problem using a computer. Genetic algorithms use the
concepts of evolution and natural selection to solve issues and provide answers. Binary
strings, or arrays of bits or characters, are sometimes used in genetic algorithms to rep-
resent chromosomes [97]. This enables the algorithm to use its calculations. Each string
represents a different approach, and the genetic process keeps enhancing the chromosomes
with the best chances of succeeding. The automated machine learning method tree-based
pipeline optimization (TPOT) is used to optimize ML pipelines. Genetic algorithms are
used in this procedure. The authors developed a power management system based on
predictive analytics to lower energy consumption and increase user comfort in residential
buildings. To maximize customer happiness and boost the overall effectiveness of energy
consumption reduction, researchers employed a genetic algorithm in combination with
data smoothing during the whole optimization process [98]. The application of genetic
algorithms in machine learning is presented in Figure 10.

4.1.8. Support Vector Machines (SVMs)

Support vector machines, or SVMs, are a kind of technology that fits within the
supervised learning category. The purpose of developing an occupancy rate projection
is to foresee the facility’s current management position, resident satisfaction, and overall
security and safety [100]. SVM algorithms hunt for the hyperplane that offers the most
significant distinction between the two kinds to divide data into two groups, both occupied
and vacant [101]. Non-differentiable pair data may be classified using non-linear kernel
functions, such as essential radial functions. By expanding the data dimensions, SVMs
categorize almost all data nowadays. These approaches find an objective function for all
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training data. Sunlight, temperature, and humidity are also important. Table 4 describes the
various machine learning algorithms, their objectives, and potential uses in IoT applications
to improve energy efficiency in intelligent grids. In response to the rise in security breaches,
researchers are using support vector machines and other classifiers in intrusion detection
systems. Prior to anything else, a basic understanding is required of how security attacks,
IDSs, and SVM classifiers work. The SVM-based intrusion detection strategies show how
researchers have altered SVM classifiers to detect a range of security threats. They also
cover the main conclusion schemes and show how algorithms and techniques were used to
raise the detection rate and precision of the SVM [102].
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Table 4. The objectives of IoT technologies, the domain of machine learning algorithms, and the
context of smart grid applications.

Sr. # Machine Learning
Models/Algorithms

Objectives in IoT
Technologies

Smart Grids Applications
Domain Advantages Disadvantages

1 ANNs Making predictions
and models

Intelligent sensors may help to
cut energy use

Excellent accuracy
and comfortable
monitoring

Complex

2 WNN. Making predictions
based on historical facts

Useful for architectural lights and
window coverings Excellent consistency Low speed

3 Deep learning
Both data predictions
and pattern modeling
benefit from it

Helpful for modeling and
planning energy-saving solutions

High precision and
acceptable speed Very complicated

4 Time series analysis High dimensionality
Produces accurate findings for
energy use forecasting
in buildings.

Predict the future
The observationsare
not independent of
one another

5 Regression Predictions based on
behavior

Learn more about the physical
and environmental factors
affecting Smart Grids’
energy efficiency.

Rapid speed Unreliable precision

6 Deep reinforcement
learning

They are systematically
making decisions

It may help solve the problem of
energy waste in
intelligent structures.

Solve
complicatedtasks Very complicated
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Table 4. Cont.

Sr. # Machine Learning
Models/Algorithms

Objectives in IoT
Technologies

Smart Grids Applications
Domain Advantages Disadvantages

7 Decision
treeclassification

Presents many
available options

Indicates the probability of an
outage and manages the
building’s energy supply and use.

Simple to understand Relative inaccurate

8 Genetic algorithms Troubles are optimized Optimal load management and
improved energy efficiency. Excellent accuracy Low speed

9 Support vector data
and the machines

Methods for ensuring
its safety in the
IoT environment.

Estimation of future construction
energy consumption. Excellent accuracy It is complex, and the

speed is low

4.2. Challenges in IoT-Enabled Smart Grids

The term “Industry 4.0” is often used to refer to a specific industrial infrastructure
that utilizes the IoT to link embedded software, the real world, and cyber-physical tech-
nologies [103]. This paradigm encourages cooperation throughout the manufacturing
process due to the employment of ML and AI. Healthcare, home automation, entertain-
ment, commerce, education, and the workplace are just a few areas where the IoT may be
applied [104]. The ability to remotely manage and monitor a variety of appliances and
other equipment in smart grids may make tenants feel safer and at peace. Despite the
potential advantages of intelligent buildings, many issues must be resolved before they
can be extensively used. The degree of safety in smart grids may be significantly raised by
paying close attention to the building’s administration, design, and rules [105].

Residents may feel more secure and comfortable in buildings that integrate AI, and
the IoT-enabled smart grids employ the data collected from various sensors to lower their
energy usage and improve operational efficiency [69]. Smart grids can better manage their
energy usage since they are outfitted with the IoT devices [106]. Smart grids may use less
energy due to IoT monitoring of environmental characteristics, including humidity, temper-
ature, and pressure. In smart grids, sensors linked to the IoT automatically switch lights.
Networked devices connected through the Internet may improve emergency management
and response. The IoT has profoundly changed our knowledge of how safety mechanisms
work since it allows the connection of sensors and the transmission of real-time data to
those in control of the situation and those at risk [107]. Figure 4 illustrates a few advantages
that may be attained by incorporating these new ideas and cutting-edge technology into the
design of intelligent buildings. This sort of application may contribute to the development
of structured smart features and provide users with greater ease. The essential IoT-enabled
factors need to be integrated with AI for smart grids to become more energy efficient.
Challenges in IoT-enabled smart grids are presented in Table 5.

Table 5. Challenges in IoT-enabled smart grids.

Sr. # Challenges Function, Role in IoT and
Smart Grids Descriptions

1 Big data analytics
Critical data volumes are
produced every second in
smart grids

Vast amounts of varied, high-resolution data are being
produced by the IoT, which may be put to various
uses—applied to gathering massive amounts of data for
analytical purposes, given the situation [108].

2 Availability of services
and networks

Intelligent buildings manage a
complex network

For intelligent buildings, coordinating the operations of
several linked building systems is a big task [109].

3 Cyber security Take care of the building
operations’ growing complexity

Increased demands on building operations need to
incorporate IP cameras into building automation systems
(BASs). These changes put individuals in harm’s way and
opened up new attack vectors [110].
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Table 5. Cont.

Sr. # Challenges Function, Role in IoT and
Smart Grids Descriptions

4
Control and legislation
of how much energy a
structure uses

The system is in place to manage
a building’s energy use

It is impossible to manage energy effectively without this
system implemented in the facility. Energy cost inspection,
energy use anomaly detection, and automated demand
response offer significant challenges [111].

5 Boost visibility To find improper settings,
visibility is crucial

Monitoring the data flow into and out of the network is
critical when there is a connection. Only if there is
visibility into them may misconfigurations, errors, or
anomalies that might result in a security vulnerability
be detected [112].

6
Connectivity,
programmability, and
manageability

Offers users high-level services
while minimizing the number of
resources used

Intelligent building management using the IoT could
improve user experience and resource efficiency. The
main concerns include control, connection, and
programmability [113].

7 Sensors’ range To convey data, smart grids
need sensors

Costs may quickly increase, particularly for “smart”
buildings, when the range of sensors is restricted [114].

8 Smart grids reduce
energy usage

It offers data analytics on the
energy consumption of
intelligent structures

Finding the most pertinent elements to the issue at hand is
the first step in increasing energy efficiency; with this
information, appropriate algorithms may then be
designed for processing the data and
information acquired [115].

9 Information gathering,
handling, and storage

The system should concurrently
gather several sorts of data

Thanks to the IoT, data may be gathered from a building’s
interior, exterior, and infrastructure. For the system to
provide accurate results, it must be able to concurrently
collect many kinds of data [116].

10
Recognizing and
attempting to anticipate
the behavior of locals

The precision needed for safe
navigation inside contemporary
constructions is nonexistent in
existing GPS systems.

Deciphering resident behavior is complex, and finding
those who have concealed themselves within structures is
much more difficult. The precision of current GPS systems
is insufficient for usage in enclosed spaces; instead of
assisting with navigation, they are intended to track
geo-fences and other location-based applications [108].

A “smart grid” is an intelligent electrical grid that can grow and change in response
to fluctuating power needs. It is crucial to prepare the power grid for the future. The
term “smart grid” describes a system of electrical power distribution that controls energy
generation, transmission, and consumption using state-of-the-art computerized systems.
This is now possible due to the smart grid. In their design, cutting-edge communication,
control, monitoring, and self-diagnosis technologies set these networks apart [117]. The
main elements that affect how an intelligent grid is constructed are shown in Figure 3.

Energy distribution networks are more complex in nations with fewer renewable
energy sources. Mexico has high-quality power. Poor resource management, improper
integration of renewable energy, and subpar service are all problems. Renewable energy
is valued in Mexico and Central America. By 2030, it is envisioned that big power plants
will generate 50% of their energy from renewable resources such as the sun and wind [118].
The traditional sources will provide half of the power, with the other half coming from
distributed and micro-generational sources such as household wind and solar. Innovative
grid development is impacted by several important factors in Figure 11.

Any country that aspires to thrive sustainably must have an energy system that is
efficient, adaptable, and intelligent. This enhances technology, economics, and environmen-
tal productivity in addition to energy supply. Smart grids bring a new era of reliability,
availability, and efficiency to the electric power industry, which benefits the global econ-
omy and the environment. To guarantee that the benefits of smart grids are realized
throughout the transition phase, it is essential to perform testing, implement technical de-
velopments, educate customers, set norms and laws, and disseminate information among
electrical workers [120].
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Before this shift, it is essential to make informed assumptions regarding the technolo-
gies’ effects on energy providers, consumers, and other electrical sector actors. We looked at
smart grids’ advantages over alternative systems, their benefits for a functioning electricity
grid, and the problems of implementing them. Our primary objective was to examine these
technologies and learn how they affect different contexts [120]. This involves analyzing
how they may improve the electrical system’s safety, dependability, and general quality.

5. Conclusions

Machine learning techniques applied to physical data, according to this research, are
used to detect cyber-physical threats and make testing easier by requiring less processing.
Additionally, using ML and deep learning, systems that can distinguish between a genuine
problem and a cyber intrusion are being developed. These engines will be used by massive
SGs. Service providers are using machine learning-based techniques to collect energy
resources from a variety of clients. This will reduce energy fluctuations and increase the
dependability of SG. Deep learning is used to investigate Het Nets’ energy efficiency and
latency difficulties in order to convey SGs’ data under different time constraints. Deep
learning is used to safeguard SGs against cyberattacks. The models put blocks together
using hashing and short signatures. Machine learning is used to analyze and improve the
energy efficiency of SGs. Intelligent power grids work in this manner. This article aims
to improve energy efficiency by connecting buildings to IoT-enabled smart grids, which
have both advantages and disadvantages. This article discusses the use of IoT by advanced
facilities. IoT devices can test smart grids. Machine learning and SGs have the potential to
improve energy efficiency. Aspects and components of the SG are discussed. This article
discusses how IoT and machine learning can improve SG’s efficiency. AI and IoT devices
have the potential to improve SGs. Because of recent advances in machine learning, SGs
are now more accessible, although improving energy efficiency remains challenging. SG
issues may aid in commercial and academic research.
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