Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Andreas Karakonstantis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 55271 KiB  
Article
Santorini Volcanic Complex (SVC): How Much Has the Crustal Velocity Structure Changed since the 2011–2012 Unrest, and at What Point Are We Now?
by Andreas Karakonstantis and Filippos Vallianatos
Geosciences 2024, 14(10), 263; https://doi.org/10.3390/geosciences14100263 - 4 Oct 2024
Viewed by 4044
Abstract
This study is focused on one of the most active features of the Hellenic Volcanic Arc Southern Aegean Sea, the Santorini Island Volcanic Complex (SVC). The recent volcano-tectonic crisis in the intracalderic area has emerged the need for closer monitoring of the region. [...] Read more.
This study is focused on one of the most active features of the Hellenic Volcanic Arc Southern Aegean Sea, the Santorini Island Volcanic Complex (SVC). The recent volcano-tectonic crisis in the intracalderic area has emerged the need for closer monitoring of the region. The 2011–2012 unrest has been attributed to the augmentation of fluid flow inside local mapped fracture zones. After March 2012, the seismic activity dropped significantly, raising questions about whether we would have a long period of quiescence or be on a break before the next period of unrest. In this research, a re-examination of the seismic outbreak of 2011–2012 was conducted by adding more travel-time data from 2013 while we further analyzed the waveform data from 2014 to May 2024 to explore the differences of the SVC body-wave velocity structure by performing seismic tomography in these two time windows. The new dataset serves to identify the state of the Santorini Volcanic Complex. The results show a significant reduction in Vp and Vs anomalies at shallow depths since the period of unrest. At the same time, the distribution of Vp/Vs ratio remains high (>1.87) in the area NNE of Kameni at a shallower depth (2 km). The areas of Christiana Islands and Columbo volcano are mainly characterized by negative body-wave anomalies and low Vp/Vs ratio (1.56–1.64) at shallow depths for the study period, while a possible explanation to results in the submarine volcano may be explained by dry steam/gas phases that may have resulted in the generation of the swarms that occurred in the region. Full article
Show Figures

Figure 1

19 pages, 64876 KiB  
Article
On the Footsteps of Active Faults from the Saronic Gulf to the Eastern Corinth Gulf: Application of Tomographic Inversion Using Recent Seismic Activity
by Andreas Karakonstantis and Filippos Vallianatos
Appl. Sci. 2024, 14(15), 6427; https://doi.org/10.3390/app14156427 - 23 Jul 2024
Viewed by 1969
Abstract
This study examines the body-wave velocity structure of Attica, Greece. The region is located between two major rifts, the Gulf of Corinth and the Euboekos Gulf, and has experienced significant earthquakes throughout history. The distribution of seismic activity in the area necessitates a [...] Read more.
This study examines the body-wave velocity structure of Attica, Greece. The region is located between two major rifts, the Gulf of Corinth and the Euboekos Gulf, and has experienced significant earthquakes throughout history. The distribution of seismic activity in the area necessitates a thorough investigation of geophysical properties, such as seismic velocities, to reveal the extent of significant fault zones or the presence of potential hidden faults. This case study utilized over 3000 revised events to conduct a local earthquake tomography (LET). P- and S-wave travel-time data were analyzed to explore small- to medium-scale (~10 km) anomalies that could be linked to local neotectonic structures. The study presents a detailed 3-D seismic velocity structure for Attica and its adjacent regions. The results of the study revealed strong lateral body-wave velocity anomalies in the upper crust were related to activated faults and that a significant portion of the observed seismicity is concentrated near the sites of the 1999 and 2019 events. Full article
(This article belongs to the Special Issue Advances in Geosciences: Techniques, Applications, and Challenges)
Show Figures

Figure 1

20 pages, 16597 KiB  
Article
3D Body-Wave Velocity Structure of the Southern Aegean, Greece
by Andreas Karakonstantis and Filippos Vallianatos
Geosciences 2023, 13(9), 271; https://doi.org/10.3390/geosciences13090271 - 7 Sep 2023
Viewed by 1945
Abstract
This study delves into the southern Aegean regionwhere the subduction of the oceanic Mediterranean lithosphere under the Aegean continental one takes place. This region is considered one of the most active ones in the eastern Mediterranean Sea due to intense tectonic movements in [...] Read more.
This study delves into the southern Aegean regionwhere the subduction of the oceanic Mediterranean lithosphere under the Aegean continental one takes place. This region is considered one of the most active ones in the eastern Mediterranean Sea due to intense tectonic movements in the Late Quaternary. More than 1200 manually revised events from 2018 to 2023 have been used in order to obtain the 3D structure of body-wave velocity and VP/VS ratioto 80 km depth through earthquaketomography. A series of resolution tests have been performed and demonstrated fair resolution of the derived velocity structures in the area of interest. The derived anomalies of body-waves (dVP, dVS) and VP/VS ratio provided important information about the southern Aegean regional tectonics and secondarily active faults of smaller scale (>20 km). The region is marked by significant low-velocity anomalies in the crust and uppermost mantle, beneath the active arc volcanoes. The seismicity related to the Hellenic Subduction Zone (HSZ) is connected to a low-angle positive anomaly of VP and VS, correlated withthe observed intermediate-depth seismicity (H ≥ 40 km) in this part of the study area. This result could be related to the diving HSZ slab. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

18 pages, 8099 KiB  
Article
An Updated Earthquake Catalogue in Crete Derived by the Development of Local 1D Velocity Models and Hypocentre Relocation
by Andreas Karakonstantis and Filippos Vallianatos
Appl. Sci. 2023, 13(17), 9860; https://doi.org/10.3390/app13179860 - 31 Aug 2023
Viewed by 2258
Abstract
Crete is located in the Southern Aegean, in the southernmost part of the Hellenic Trench. Given the large number of earthquakes in the region generated by the convergence of the Eurasian and African tectonic plates, the research area is critical. More than 7000 [...] Read more.
Crete is located in the Southern Aegean, in the southernmost part of the Hellenic Trench. Given the large number of earthquakes in the region generated by the convergence of the Eurasian and African tectonic plates, the research area is critical. More than 7000 manually revised events from 2018 to 2023 were used in this work to construct local 1D velocity models of Crete and the neighbouring areas. The P-wave velocity models were constructed using the spatiotemporal error minimisation method estimated using the HYPOINVERSE algorithm. At the same time, the VP/VS ratio was obtained using the Chatelain method, which compares the time difference in P and S phases recorded by pairs of corresponding stations. We then relocated the seismicity of the study area that was recorded by both permanent and temporary seismic networks during the abovementioned period. The double-difference algorithm was used to relocate events with magnitudes above the magnitude of completeness, resulting in more than 4500 precise relative locations with horizontal and vertical uncertainties of less than 2.5 km. The precise locations delineated faults both on the island and in the offshore study area. Furthermore, the results are discussed and compared with the ones derived from other significant previous works presented recently. The final dataset analysis contributes to a better understanding of the research area’s seismicity as triggered by local and regional tectonic structures. Full article
Show Figures

Figure 1

22 pages, 7946 KiB  
Article
Complexity of Recent Earthquake Swarms in Greece in Terms of Non-Extensive Statistical Physics
by Eirini Sardeli, Georgios Michas, Kyriaki Pavlou, Filippos Vallianatos, Andreas Karakonstantis and Georgios Chatzopoulos
Entropy 2023, 25(4), 667; https://doi.org/10.3390/e25040667 - 16 Apr 2023
Cited by 5 | Viewed by 3182
Abstract
Greece exhibits the highest seismic activity in Europe, manifested in intense seismicity with large magnitude events and frequent earthquake swarms. In the present work, we analyzed the spatiotemporal properties of recent earthquake swarms that occurred in the broader area of Greece using the [...] Read more.
Greece exhibits the highest seismic activity in Europe, manifested in intense seismicity with large magnitude events and frequent earthquake swarms. In the present work, we analyzed the spatiotemporal properties of recent earthquake swarms that occurred in the broader area of Greece using the Non-Extensive Statistical Physics (NESP) framework, which appears suitable for studying complex systems. The behavior of complex systems, where multifractality and strong correlations among the elements of the system exist, as in tectonic and volcanic environments, can adequately be described by Tsallis entropy (Sq), introducing the Q-exponential function and the entropic parameter q that expresses the degree of non-additivity of the system. Herein, we focus the analysis on the 2007 Trichonis Lake, the 2016 Western Crete, the 2021–2022 Nisyros, the 2021–2022 Thiva and the 2022 Pagasetic Gulf earthquake swarms. Using the seismicity catalogs for each swarm, we investigate the inter-event time (T) and distance (D) distributions with the Q-exponential function, providing the qT and qD entropic parameters. The results show that qT varies from 1.44 to 1.58, whereas qD ranges from 0.46 to 0.75 for the inter-event time and distance distributions, respectively. Furthermore, we describe the frequency–magnitude distributions with the Gutenberg–Richter scaling relation and the fragment–asperity model of earthquake interactions derived within the NESP framework. The results of the analysis indicate that the statistical properties of earthquake swarms can be successfully reproduced by means of NESP and confirm the complexity and non-additivity of the spatiotemporal evolution of seismicity. Finally, the superstatistics approach, which is closely connected to NESP and is based on a superposition of ordinary local equilibrium statistical mechanics, is further used to discuss the temporal patterns of the earthquake evolution during the swarms. Full article
Show Figures

Figure 1

32 pages, 14207 KiB  
Article
On the Patterns and Scaling Properties of the 2021–2022 Arkalochori Earthquake Sequence (Central Crete, Greece) Based on Seismological, Geophysical and Satellite Observations
by Filippos Vallianatos, Andreas Karakonstantis, Georgios Michas, Kyriaki Pavlou, Maria Kouli and Vassilis Sakkas
Appl. Sci. 2022, 12(15), 7716; https://doi.org/10.3390/app12157716 - 31 Jul 2022
Cited by 13 | Viewed by 3371
Abstract
The 27 September 2021 damaging mainshock (Mw6.0) close to Arkalochori village is the strongest earthquake that was recorded during the instrumental period of seismicity in Central Crete (Greece). The mainshock was preceded by a significant number of foreshocks that lasted nearly four months. [...] Read more.
The 27 September 2021 damaging mainshock (Mw6.0) close to Arkalochori village is the strongest earthquake that was recorded during the instrumental period of seismicity in Central Crete (Greece). The mainshock was preceded by a significant number of foreshocks that lasted nearly four months. Maximum ground subsidence of about 18 cm was estimated from InSAR processing. The aftershock sequence is located in an almost NE-SW direction and divided into two main clusters, the southern and the northern ones. The foreshock activity, the deformation area, and the strongest aftershocks are located within the southern cluster. Based on body-wave travel times, a 3-D velocity model was developed, while using combined space and ground-based geodetic techniques, the co-seismic ground deformation is presented. Moreover, we examined the co-seismic static stress changes with respect to the aftershocks’ spatial distribution during the major events of the foreshocks, the Mw = 6.0 main event as well as the largest aftershock. Both the foreshock and the aftershock sequences obey the scaling law for the frequency-magnitude distribution as derived from the framework of non-extensive statistical physics (NESP). The aftershock production rate decays according to the modified Omori scaling law, exhibiting various Omori regimes due to the generation of secondary aftershock sequences. The analysis of the inter-event time distribution, based on NESP, further indicates asymptotic power-law scaling and long-range correlations among the events. The spatiotemporal evolution of the aftershock sequence indicates triggering by co-seismic stress transfer, while its slow migration towards the outer edges of the area of the aftershocks, related to the logarithm of time, further indicates a possible afterslip. Full article
(This article belongs to the Special Issue Geographic Visualization: Evaluation and Monitoring of Geohazards)
Show Figures

Figure 1

29 pages, 74918 KiB  
Article
Investigation of the Thiva 2020–2021 Earthquake Sequence Using Seismological Data and Space Techniques
by George Kaviris, Vasilis Kapetanidis, Ioannis Spingos, Nikolaos Sakellariou, Andreas Karakonstantis, Vasiliki Kouskouna, Panagiotis Elias, Andreas Karavias, Vassilis Sakkas, Theodoros Gatsios, Ioannis Kassaras, John D. Alexopoulos, Panayotis Papadimitriou, Nicholas Voulgaris and Issaak Parcharidis
Appl. Sci. 2022, 12(5), 2630; https://doi.org/10.3390/app12052630 - 3 Mar 2022
Cited by 9 | Viewed by 4198
Abstract
We investigate an earthquake sequence involving an Mw = 4.6 mainshock on 2 December 2020, followed by a seismic swarm in July–October 2021 near Thiva, Central Greece, to identify the activated structures and understand its triggering mechanisms. For this purpose, we employ [...] Read more.
We investigate an earthquake sequence involving an Mw = 4.6 mainshock on 2 December 2020, followed by a seismic swarm in July–October 2021 near Thiva, Central Greece, to identify the activated structures and understand its triggering mechanisms. For this purpose, we employ double-difference relocation to construct a high-resolution earthquake catalogue and examine in detail the distribution of hypocenters and the spatiotemporal evolution of the sequence. Furthermore, we apply instrumental and imaging geodesy to map the local deformation and identify long-term trends or anomalies that could have contributed to stress loading. The 2021 seismic swarm was hosted on a system of conjugate normal faults, including the eastward extension of the Yliki fault, with the main activated structures trending WNW–ESE and dipping south. No pre- or coseismic deformation could be associated with the 2021 swarm, while Coulomb stress transfer due to the Mw = 4.6 mainshock of December 2020 was found to be insufficient to trigger its nucleation. However, the evolution of the swarm is related to stress triggering by its major events and facilitated by pore-fluid pressure diffusion. The re-evaluated seismic history of the area reveals its potential to generate destructive Mw = 6.0 earthquakes; therefore, the continued monitoring of its microseismicity is considered important. Full article
(This article belongs to the Special Issue Mapping, Monitoring and Assessing Disasters)
Show Figures

Figure 1

21 pages, 7953 KiB  
Article
Estimation of Earthquake Early Warning Parameters for Eastern Gulf of Corinth and Western Attica Region (Greece). First Results
by Filippos Vallianatos, Andreas Karakonstantis and Nikolaos Sakelariou
Sensors 2021, 21(15), 5084; https://doi.org/10.3390/s21155084 - 27 Jul 2021
Cited by 4 | Viewed by 3178
Abstract
The main goal of an Earthquake Early Warning System (EEWS) is to alert before the arrival of damaging waves using the first seismic arrival as a proxy, thus becoming an important operational tool for real-time seismic risk management on a short timescale. EEWSs [...] Read more.
The main goal of an Earthquake Early Warning System (EEWS) is to alert before the arrival of damaging waves using the first seismic arrival as a proxy, thus becoming an important operational tool for real-time seismic risk management on a short timescale. EEWSs are based on the use of scaling relations between parameters measured on the initial portion of the seismic signal after the arrival of the first wave. To explore the plausibility of EEWSs around the Eastern Gulf of Corinth and Western Attica, amplitude and frequency-based parameters, such as peak displacement (Pd), the integral of squared velocity (IV 2) and the characteristic period (τc), were analyzed. All parameters were estimated directly from the initial 3 s, 4 s, and 5 s signal windows (tw) after the P arrival. While further study is required on the behavior of the proxy quantities, we propose that the IV 2 parameter and the peak amplitudes of the first seconds of the P waves present significant stability and introduce the possibility of a future on-site EEWS for areas affected by earthquakes located in the Eastern Gulf of Corinth and Western Attica. Parameters related to regional-based EEWS need to be further evaluated. Full article
(This article belongs to the Special Issue Sensor Solutions towards Climate-Resilient and Sustainable Cities)
Show Figures

Figure 1

28 pages, 18732 KiB  
Review
The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation
by Ioannis Kassaras, Vasilis Kapetanidis, Athanassios Ganas, Andreas Tzanis, Chrysanthi Kosma, Andreas Karakonstantis, Sotirios Valkaniotis, Stylianos Chailas, Vasiliki Kouskouna and Panayotis Papadimitriou
Geosciences 2020, 10(11), 447; https://doi.org/10.3390/geosciences10110447 - 8 Nov 2020
Cited by 50 | Viewed by 14281
Abstract
Knowledge and visualization of the present-day relationship between earthquakes, active tectonics and crustal deformation is a key to understanding geodynamic processes, and is also essential for risk mitigation and the management of geo-reservoirs for energy and waste. The study of the complexity of [...] Read more.
Knowledge and visualization of the present-day relationship between earthquakes, active tectonics and crustal deformation is a key to understanding geodynamic processes, and is also essential for risk mitigation and the management of geo-reservoirs for energy and waste. The study of the complexity of the Greek tectonics has been the subject of intense efforts of our working group, employing multidisciplinary methodologies that include detailed geological mapping, geophysical and seismological data processing using innovative methods and geodetic data processing, involved in surveying at various scales. The data and results from these studies are merged with existing or updated datasets to compose the new Seismotectonic Atlas of Greece. The main objective of the Atlas is to harmonize and integrate the most recent seismological, geological, tectonic, geophysical and geodetic data in an interactive, online GIS environment. To demonstrate the wealth of information available in the end product, herein, we present thematic layers of important seismotectonic and geophysical content, which facilitates the comprehensive visualization and first order insight into seismic and other risks of the Greek territories. The future prospect of the Atlas is the incorporation of tools and algorithms for joint analysis and appraisal of these datasets, so as to enable rapid seismotectonic analysis and scenario-based seismic risk assessment. Full article
(This article belongs to the Special Issue Seismotectonics, Active Deformation, and Structure of the Crust)
Show Figures

Figure 1

Back to TopTop