Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Collection, Antibiotic Susceptibility Testing and Phylotyping
2.2. Sequencing of the E. coli Genomes
2.3. Genome Analysis
2.4. Nucleotide Sequence Accession Numbers
3. Results and Discussion
3.1. CRISPR/Cas Systems
3.2. Plasmidome and Resistome
3.3. Virulome
3.4. Phylogenomics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Touchon, M.; Hoede, C.; Tenaillon, O.; Barbe, V.; Baeriswyl, S.; Bidet, P.; Bingen, E.; Bonacorsi, S.; Bouchier, C.; Bouvet, O.; et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 2009, 5, e1000344. [Google Scholar] [CrossRef] [PubMed]
- De Toro, M.; Garcillán-Barcia, M.P.; de la Cruz, F. Plasmid diversity and adaptation analyzed by massive sequencing of Escherichia coli plasmids. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Gillings, M.R.; Stokes, H.W. Are humans increasing bacterial evolvability? Trends Ecol. Evol. 2012, 27, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Kuskowski, M.A.; Gaiewski, A.; Sahm, D.F.; Karlowsky, J.A. Virulence characteristics and phylogenetic background of multidrug-resistant and antimicrobial-susceptible clinical isolates of Escherichia coli from across the United States 2000–2001. J. Infect. Dis. 2004, 190, 1739–1744. [Google Scholar] [CrossRef][Green Version]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal E. coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild birds, frequent carriers of extended-spectrum β-lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 types. Microb. Ecol. 2016, 72, 861–869. [Google Scholar] [CrossRef]
- Alonso, C.A.; González-Barrio, D.; Tenorio, C.; Ruiz-Fons, F.; Torres, C. Antimicrobial resistance in faecal Escherichia coli isolates from farmed reed deer and wild small mammals. Detection of a multiresistant E. coli producing extended-spectrum beta-lactamase. Comp. Immunol. Microbiol. Infect. Dis. 2016, 45, 34–39. [Google Scholar] [CrossRef]
- Alonso, C.A.; González-Barrio, D.; Ruiz-Fons, F.; Ruiz-Ripa, L.; Torres, C. High frequency of B2 phylogroup among non-clonally related fecal Escherichia coli isolates from wild boars, including the lineage ST131. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef]
- Alonso, C.A.; Alcalá, L.; Simón, C.; Torres, C. Novel sequence types of extended-spectrum and acquired AmpC beta-lactamase producing Escherichia coli and Escherichia clade V isolated from wild mammals. FEMS Microbiol. Ecol. 2017, 93, fix097. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Vielva, L.; de Toro, M.; Lanza, V.; de la Cruz, F. PLACNETw: A web-based tool for plasmid reconstruction from bacterial genomes. Bioinformatics 2017, 33, 3796–3798. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestegaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-time whole-genome sequencing for routine typing, surveillance and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef]
- Grissa, I.; Vergnaud, G.; Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform. 2007, 8, 172. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsable for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef]
- Mojica, F.J.; Juez, G.; Rodríguez-Valera, F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 1993, 9, 613–621. [Google Scholar] [CrossRef]
- Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 2006, 1, 7. [Google Scholar] [CrossRef]
- Aydin, S.; Personne, Y.; Newire, E.; Laverick, R.; Russell, O.; Roberts, A.P.; Enne, V.I. Presence of type I-F CRISPR-Cas systems is associated with antimicrobial susceptibility in Escherichia coli. J. Antimicrob. Chemother. 2017, 72, 2213–2218. [Google Scholar] [CrossRef]
- Westra, E.R.; Pul, U.; Heidrich, N.; Heidrich, N.; Jore, M.M.; Lundgren, M.; Stratmann, T.; Wurm, R.; Raine, A.; Mescher, M.; et al. H-NS-mediated repression of CRISPR based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol. Microbiol. 2010, 77, 1380–1393. [Google Scholar] [CrossRef]
- Cady, K.C.; Bondy-Denomy, J.; Heussler, G.E.; Davidson, A.R.; O’Toole, G.A. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 2012, 194, 5728–5738. [Google Scholar] [CrossRef]
- Almendros, C.; Guzmán, N.M.; Díez-Villaseñor, C.; García-Martínez, J.; Mojica, F.J.M. Target motifs affecting natural immunity by a constitutive CRISPR-Cas System in Escherichia coli. PLoS ONE 2012, 7, e50797. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR-Cas system: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Almendros, C.; Mojica, F.J.M.; Díez-Villaseñor, C.; Guzmán, N.M.; García-Martínez, J. CRISPR-Cas functional module exchange in Escherichia coli. mBio 2014, 5, e00767-13. [Google Scholar] [CrossRef]
- Liu, S.; Jin, D.; Lan, R.; Wang, Y.; Meng, Q.; Dai, H.; Lu, S.; Hu, S.; Xu, J. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int. J. Syst. Evol. Microbiol. 2015, 65, 2130–2134. [Google Scholar] [CrossRef]
- Kupczok, A.; Landan, G.; Dagan, T. The contribution of genetic recombination to CRISPR array evolution. Genome Biol. Evol. 2015, 7, 1925–1939. [Google Scholar] [CrossRef]
- Díez-Villaseñor, C.; Almendros, C.; García-Martínez, J.; Mojica, F.J.M. Diversity of CRISPR loci in Escherichia coli. Microbiology 2010, 156, 1351–1361. [Google Scholar] [CrossRef]
- Touchon, M.; Charpentier, S.; Clermont, O.; Rocha, E.P.; Denamur, E.; Branger, C. CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J. Bacteriol. 2011, 193, 2460–2467. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Chanoine, M.H.; Bertrand, X.; Madec, J.Y. Escherichia coli ST131, an Intriguing Clonal Group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [PubMed]
- Smillie, C.; Garcillán-Barcia, M.P.; Francia, M.V.; Rocha, E.P.; de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 2010, 74, 434–452. [Google Scholar] [CrossRef] [PubMed]
- Spaková, T.; Fecskeová, L.K.M.; Javorský, P.; Pristas, P. Two rep genes in small cryptic plasmid pKSTt21 of Escherichia coli. Curr. Microbiol. 2013, 67, 437–441. [Google Scholar] [CrossRef]
- Brolund, A.; Franze’n, O.; Melefors, O.; Tegmark-Wisell, K.; Sandegren, L. Plasmidome-analysis of ESBL-producing E. coli using conventional typing and high-throughput sequencing. PLoS ONE 2013, 8, e65793. [Google Scholar] [CrossRef]
- Attéré, S.A.; Vincent, A.T.; Paccaud, M.; Frenette, M.; Charette, S.J. The role for the small cryptic plasmids as moldable vectors for genetic innovation in Aeromonas salmonicida subsp. salmonicida. Front. Genet. 2017, 8. [Google Scholar] [CrossRef]
- Billard-Pomares, T.M.; Fouteau, S.; Jacquet, M.E.; Roche, D.; Barbe, V.; Castellanos, M.; Bouet, J.Y.; Cruveiller, S.; Médique, C.; Blanco, J.; et al. Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrob. Agents Chemother. 2014, 58, 6550–6557. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Liu, F.; Jiang, H.; Qu, Z.; Lei, M.; Wang, J.; Zhang, B.; Hu, Y.; Ding, J.; et al. A phage-like IncY plasmid carrying the mcr-1 gene in Escherichia coli from a pig farm in China. Antimicrob. Agents Chemother. 2017, 61, e02035. [Google Scholar] [CrossRef]
- Haft, R.J.; Mittler, J.E.; Traxler, B. Competition favours reduced cost of plasmids to host bacteria. ISME J. 2009, 3, 761–769. [Google Scholar] [CrossRef]
- Yau, S.; Liu, X.; Djordjevic, S.P.; Hall, R.M. RSF1010-like plasmids in Australian Salmonella enteric serovar Typhimurium and origin of their sul2-strA-strB antibiotic resistance gene cluster. Microb. Drug Resist. 2010, 16, 249–252. [Google Scholar] [CrossRef]
- Sunde, M.; Simonsen, G.S.; Slettemeas, J.S.; Hockerman, I.; Norstrom, M. Integron, plasmid and host strain characteristics of Escherichia coli from humans and food included in the Norwegian Antimicrobial Resistance Monitoring Programs. PLoS ONE 2015, 10, e0128797. [Google Scholar] [CrossRef][Green Version]
- Dawes, F.E.; Kuzevski, A.; Bettelheim, K.A.; Hornitzky, M.A.; Djordjevic, S.P.; Walker, M.J. Distribution of class 1 integrons wih IS26-mediated deletions in their 3´-CS conserved segments in Escherichia coli of human and animal origin. PLoS ONE 2010, 5, e12754. [Google Scholar] [CrossRef]
- Cullik, A.; Pfeifer, Y.; Prager, R.; von Baum, H.; Witte, W. A novel IS26 structure surrounds blaCTX-M genes in different plasmids from German clinical Escherichia coli isolates. J. Med. Microbiol. 2010, 59, 580–587. [Google Scholar] [CrossRef]
- Wang, J.; Stephan, R.; Power, K.; Yan, Q.; Hächler, H.; Fanning, S. Nucleotide sequences of 16 transmissible plasmids identified in nine multidrug-resistant Escherichia coli isolates expressing an ESBL phenotype isolated from food-producing animals and healthy humans. J. Antimicrob. Chemother. 2014, 69, 2658–2668. [Google Scholar] [CrossRef]
- Snesrud, E.; Ong, A.C.; Corey, B.; Kwak, Y.I.; Clifford, R.; Gleeson, T.; Wood, S.; Whitman, T.J.; Lesho, E.P.; Hinkle, M.; et al. Analysis of serial isolates of mcr-1-positive Escherichia coli reveals a highly active ISApl1 transposon. Antimicrob. Agents Chemother. 2017, 61, e00056-17. [Google Scholar] [CrossRef]
- Smith, D.K.; Kassam, T.; Singh, B.; Elliott, J.F. Escherichia coli has two homologous glutamate descarboxylase genes that map to distinct loci. J. Bacteriol. 1992, 174, 5820–5826. [Google Scholar] [CrossRef]
- Dogan, B.; Rishniw, M.; Bruant, G.; Harel, J.; Schukken, Y.H.; Simpson, K.W. Phylogroup and lpfA influence epithelial invasion by mastitis associated Escherichia coli. Vet. Microbiol. 2012, 159, 163–170. [Google Scholar] [CrossRef]
- Parham, N.J.; Pollard, S.J.; Desvaux, M.; Scott-Tucker, A.; Liu, C.; Fivian, A.; Henderson, I.R. Distribution of the serine protease autotransporters of the Enterobacteriaceae among extraintestinal clinical isolates of Escherichia coli. J. Clin. Microbiol. 2005, 43, 4076–4082. [Google Scholar] [CrossRef]
- Moriel, D.G.; Bertoldi, I.; Spagnuolo, A.; Marchi, S.; Rosini, R.; Nesta, B.; Pastorello, I.; Corea, V.A.; Torricelli, G.; Cartocci, E.; et al. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2010, 107, 9072–9077. [Google Scholar] [CrossRef]
- Johnson, T.J.; Siek, K.E.; Johnson, S.J.; Nolan, L.K. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J. Bacteriol. 2006, 188, 745–758. [Google Scholar] [CrossRef]
- Micenková, L.; Štaudová, B.; Bosák, J.; Mikalová, L.; Littnerová, S.; Vrba, M.; Ševčíková, A.; Woznicová, V.; Šmajs, D. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol. 2014, 14, 109. [Google Scholar] [CrossRef]
- Martin, P.; Tronnet, S.; Garcie, C.; Oswald, E. Interplay between siderophores and colibactin genotoxin in Escherichia coli. IUBMB Life. 2017, 69, 435–441. [Google Scholar] [CrossRef]
- Xu, W.Y.; Li, Y.J.; Fan, C. Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli. Can. J. Microbiol. 2018, 64, 147–154. [Google Scholar] [CrossRef]
- Johnson, T.J.; Wannemuehler, Y.M.; Nolan, L.K. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 2008, 74, 2360–2369. [Google Scholar] [CrossRef]
- McVeigh, A.; Fasano, A.; Scott, D.A.; Jelacic, S.; Moseley, S.L.; Robertson, D.C.; Savarino, S.J. IS1414, an Escherichia coli insertion sequence with a heat-stable enterotoxin gene embedded in a transposase-like gene. Infect. Immun. 2000, 68, 5710–5715. [Google Scholar] [CrossRef][Green Version]
- Jønsson, R.; Struve, C.; Boll, E.J.; Boisen, N.; Joensen, K.G.; Sørensen, C.A.; Jensen, B.H.; Scheutz, F.; Jenssen, H.; Krogfelt, K.A. A Novel pAA Virulence Plasmid Encoding Toxins and Two Distinct Variants of the Fimbriae of Enteroaggregative Escherichia coli. Front. Microbiol. 2017, 8, 263. [Google Scholar] [CrossRef]
- Burgos, Y.; Beutin, L. Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli. BMC Microbiol. 2010, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Walk, S.T.; Alm, E.W.; Gordon, D.M.; Ram, J.L.; Toranzos, G.A.; Tiedje, J.M.; Whittam, T.S. Cryptic lineages of the genus Escherichia. Appl. Environ. Microbiol. 2009, 75, 6534–6544. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Walk, S.T.; Gordon, D.M.; Feldgarden, M.; Tiedje, J.M.; Konstantinidis, K.T. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl. Acad. Sci. USA 2011, 108, 7200–7205. [Google Scholar] [CrossRef]
- Kaas, R.S.; Friis, C.; Ussery, D.W.; Aarestrup, F.M. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genom. 2012, 13, 577. [Google Scholar] [CrossRef] [PubMed]
- Zerbino, D.R. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinform. 2010. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
Small Plasmid | Size (bp) | Relaxasa | Replicon Type | Accessory Genes (Proteins) | ≥99% Identical Plasmids (Strain Host) |
---|---|---|---|---|---|
C7369-2 | 3371 | MOBP51 | nd | orf1 (hypothetical potein) | CP012927 (human) |
C8124-2 | 4633 | MOBP51 | col(RNAI) | orf1 (hypothetical potein) | - |
C7382-1 | 6493 | MOBP51 | col(RNAI) | cea (colicin E1), cei (colicin E1 immunity), cel (colicin E1 lysis), exc1 (entry exclusion 1), exc2 (entry exclusion 2) | - |
C7962 | 4203 | MOBP51 | nd | orf1, orf2, orf3 (hypothetical poteins) | - |
C7971 | 4182 | MOBP51 | nd | orf1, orf2, orf3 (hypothetical poteins) | - |
C7969 | 5428 | - | col(RNAI) | cna (colicin N), cni (colicin N immunity), cnl (colicin N lysis), exc1 (entry exclusion 1), exc2 (entry exclusion 2) | - |
C6466-1 | 3609 | - | col(RNAI) | orf1 (hypothetical potein) | KU166868 (human), CP006052 (chicken) |
C6466-2 | 1506 | - | col(MG828) | orf1 (hypothetical) | CP010877 (human) |
C7369-1 | 2255 | - | col(MG828) | orf1, orf2, orf3 (hypothetical) | - |
C7347 | 1736 | - | col(MG828) | orf1 (hypothetical) | - |
C6466-3 | 5132 | MOBQ12 | col(156) | orf1 (hypothetical) | - |
C7369-3 | 3904 | MOBQ12 | col(156) | orf1 (hypothetical) | CP012638 (human), CP019896 (beef) |
C8124-3 | 8138 | MOBQu | col(156) | col (colicin E8), cei (3 genes) (colicin immunity), cel (2 genes) (colicin lysis); orf1, orf2, orf3 (hypothetical) | AP010964 (human) |
C8124-1 | 4110 | MOBQu | nd | - | - |
C7382-2 | 3348 | MOBV2 | nd | orf1 (hypothetical) | - |
C7328 | 3087 | - | Col440I | orf1, orf2, orf3 (hypothetical) | - |
C7974 | 2717 | - | nd | orf1, orf2, orf3 (hypothetical) | - |
C7973 | 2717 | - | nd | orf1, orf2, orf3 (hypothetical) | - |
Strain, Origin a | No. Plasm. | Inc/Rep Types, Phages | Relaxase Protein c | Resistance Genes | Virulence Genes | CRISPR/Cas Systems | ST/PG e | |||
---|---|---|---|---|---|---|---|---|---|---|
Chromosome | Plasmids | Chromosome | Plasmids | Subtype | No. Spacers | |||||
C6466, BP | 5 | IncFII, IncX1, col(156), col(MG828) (2) | MOBP3, MOBQ12 | - | gad | - | I-E | 4, 6 | 10/A | |
C6468, BP | 1 | IncFIA-IncFIB | MOBF12 | tet(B), blaTEM-1b, catA1, dfrA17, aadA5, aph(3’)-Ia | gad, lpfA, iss | - | I-E | 14, 20 | 1642/B1 | |
C6473, BP | 1 | IncFIB-IncFIC(FIIA) | MOBF12 | tet(B), blaTEM-1b, catA1, dfrA17, aadA5 | gad, lpfA | iss, cva | I-E | 16, 20 | 162/B1 | |
C6518, BP | 1 | IncX1 | MOBP3 | blaTEM-1b | gad, lpfA | - | I-E | 7, ND | 3634/A | |
C6842, R | 1 | IncI1 | MOBP12 | blaTEM-1a, strA, strB, aph(4)-Ia, aac(3)-IVa | gad, iss | - | I-E | 13, 4 | 10/A | |
C6847, R | 2 | IncFIA-IncFII, IncX1-X4 | MOBF12 | - | gad, ast | iss, iroN, cva | - | - | 322/Cl. IV | |
C6894, R | - | - | - | - | gad, lpfA | - | I-E | 26, ND | 7631/B1 | |
C6895, R | 1 | IncFIA-IncFIB-IncFIC(FII) | MOBF12 | - | gad, lpfA, iss | astA | I-E | 24, 10 | 295/B1 | |
C6949, R | nd | IncFII, IncY | nd | - | gad, lpfA | - | I-E | 8, 7 | 7629/B1 | |
C6950, R | 2 | IncFIA-IncFII, IncX1-X4 | MOBF12 | - | gad, ast | iss, iroN, cva | - | - | 322/Cl. IV | |
C7030, R | - | - | - | - | gad, lpfA | - | I-E | 12, 20 | 58/B1 | |
C7031, R | - | - | - | - | gad, lpfA, iss | - | I-E | 31, 23 | 5869/B1 | |
C7032, R | 1 | IncFIB-IncFII | MOBF12 | - | gad, iss, vat, pic, mcmA, mchB, mchC, mchF, iroN | cma | - | - | 104/B2 | |
C7136, D | 1 | IncFII, IncY (phage-like plasmid) | - | - | gad, lpfA, iss | - | I-E | 14, 18 | 1308/B1 | |
C7143, D | - | - | - | gad, lpfA | - | I-E | 25, 23 | 4511/B1 | ||
C7145, D | 1 | IncB/O/K/Z | MOBP12 | - | gad, lpfA, iss, air, eilA | aaiC, astA | I-E | 17, 9 | 69/D | |
C7148, D | 1 | IncFIA-IncFIB-IncFII | MOBF12 | - | gad, lpfA | - | I-E | 10, 13 | 906/B1 | |
C7257, D | - | - | - | - | gad, lpfA | - | I-E | 16, 20 | 939/B1 | |
C7259, D | - | - | - | - | gad, lpfA | - | I-E | 16, 20 | 939/B1 | |
C7277, D | 1 | IncI1 | MOBP12 | - | gad, lpfA | - | I-E | 9, 22 | 7624/B1 | |
C7279, D | - | - | - | tet(B) | gad, iss | - | I-E | 4, 3 | 1718/A | |
C7328, D | 3 | IncN, IncR-IncFIA (HI1), SCP b | MOBF11 | tet(A), blaPSE-1, blaCTX-M-1, dfrA16, aadA2, mph(A), sul3 | gad, lpfA | - | I-E | 31, 15 | 224/B1 | |
C7347, D | 1 | col(MG828), phage φX174 | - | - | gad, iha, ireA, subA, espI | - | I-E | 4, 1 | 812/B2 | |
C7349, D | 1 | IncFIB-IncFII | MOBF12 | - | gad, lpfA, iss, iha, ireA, astA, mchC, mchB, mchF, subAd | ehxA (hlyA) | I-E | 26, 12 | 26/B1 | |
C7369, BP | 4 | IncFIB-IncFIC(FIIA), col(MG828), col(156), SCP b | MOBF12, MOBP51, MOBQ12 | - | gad, lpfA, iss | iss, iroN, cva, cma, cba | I-E | 12, 27 | 155/B1 | |
C7382, BP | 3 | IncFIB-IncC(FIIA), colRNAI, SCP b | MOBF12, MOBP51, MOBV2 | - | gad, lpfA, iss, ast | iss, cva, cea | I-E | 11, 8 | 767/B1 | |
C7570, BP | - | - | - | gad, vat | - | I-F1 | 9, 32 | 135/B2 | ||
C7962, WB | 2 | IncFII, SCP b | MOBF12, MOBP51 | - | gad, lpfA, iss, ast | ast, cma, cba | I-E | 20, 11 | 388/B1 | |
C7963, WB | 1 | IncFIB-IncFII | MOBF12 | - | gad, iss, iroN, vat, sfaS | iss, cva, cma, cba, tsh | I-F1 | 6, 9 | 567/B2 | |
C7968, WB | 1 | IncFIA-IncFIB | nd | - | gad, lpfA | - | I-E | 7, 12 | 1423/B1 | |
C7969, WB | 2 | IncFIB-FII, col(RNAI) | nd | - | gad, astA | cna | I-F1 | 21, 12 | 7630/Cl.V | |
C7970, WB | 1 | IncFIB-IncFIC (FII) | MOBF12 | - | gad, iss | iroN | - | - | 131/B2 | |
C7971, WB | 1 | SCP b | MOBP51 | - | gad, astA, vat | - | - | - | 1170/B2 | |
C7973, WB | 2 | IncI1, col(RNAI) | MOBP12 | tet(B) d | - | gad, iss, capU | - | I-E | 11, 6 | 7632/A |
C7974, WB | nd | IncQ1, col(RNAI) | MOBP12 | tet(B) d | tet(A), blaTEM-1b, strA, strB, sul2 | gad, iss, capU | - | I-E | 11, 6 | 7632/A |
C7975, WB | - | - | - | gad, iss, iroN, vat, mcmA, mchC, mchB, mchF | - | I-F1 | 13, 5 | 625/B2 | ||
C7979, WB | 1 | IncFIC(FII) | MOBF12 | - | gad, astA, vat | - | - | - | 1317/B2 | |
C8124, WB | 4 | IncFIB-IncFII-IncQ1, col(RNAI), col(156), SCP b | MOBF12, MOBP51, MOBQu | dfrA5, strA, strB, sul2 | gad, lpfA, iss | iss, iroN, cva, cea | I-E | 5, 13 | 58/B1 |
Colicin/Microcin | Gene Cluster | Genetic Location | Plasmid or PAI Features | Strain (Phylogroup) | Host | |
---|---|---|---|---|---|---|
MOB/Inc | Size (kb) | |||||
E1 | cea, cei, cel | Plasmid | MOBP51/col(RNAI) | 6.6 | C7382 (B1) | Bird of prey |
E8 | cea, cei, cel | Plasmid | MOBQu/col(156) | 8.1 | C8124 (B1) | Wild boar |
H47 | mchB, mchC, mchF, mcmA | Chromosome | PAI-CFT073-serX | - | C7975 (B2) | Wild boar |
H47 | mchB, mchC, mchF, mcmA | Chromosome | PAI-CFT073-serX | - | C7032 (B2) | Rodent |
H47-like | mchB, mchC, mchF | Chromosome | - | C7349 (B1) | Deer | |
M, B | cma-cmi, cba-cbi | Plasmid | MOBF12/IncFIB-IncFIC(FIIA) | ~120 | C7369 (B1) | Bird of prey |
M, B | cma-cmi, cba-cbi | Plasmid | MOBF12/IncFII | ~100 | C7962 (B1) | Wild boar |
M, B | cma-cmi, cba-cbi | Plasmid | MOBF12/IncFIB-IncFII | ~130 | C7963 (B2) | Wild boar |
M, B (truncated) | cma-cmi, cba-cbi | Plasmid | MOBF12/IncFIB-IncFII | ~120 | C7032 (B2) | Rodent |
N | cna, cni, cnl | Plasmid | -/col(RNAI) | 5.4 | C7969 (Clade V) | Wild boar |
V | cvaA, cvaB, cvaC | Plasmid | MOBF12/IncFIB-IncFIC(FIIA) | ~150 | C6473 (B1) | Bird of prey |
V | cvaA, cvaB, cvaC | Plasmid | MOBF12/IncFIA-IncFII | ~150 | C6847 (Clade IV) | Rodent |
V | cvaA, cvaB, cvaC | Plasmid | MOBF12/IncFIA-IncFII | ~150 | C6950 (Clade IV) | Rodent |
V | cvaA, cvaB, cvaC | Plasmid | MOBF12/IncFIB-IncFII | ~130 | C7963 (B2) | Wild boar |
V | cvaA, cvaB, cvaC | Plasmid | MOBF12/IncFIB-IncFII-IncQ1 | ~150 | C8124 (B1) | Wild boar |
V | cvaA, cvaB, cvaC | Plasmid | MOBF12/IncFIB-IncFIC(FIIA) | ~100 | C7382 (B1) | Bird of prey |
V | cvaA, cvaB, cvaC | Plasmid | MOBF12/IncFIB-IncFIC(FIIA) | ~120 | C7369 (B1) | Bird of prey |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, C.A.; de Toro, M.; de la Cruz, F.; Torres, C. Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Microorganisms 2021, 9, 999. https://doi.org/10.3390/microorganisms9050999
Alonso CA, de Toro M, de la Cruz F, Torres C. Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Microorganisms. 2021; 9(5):999. https://doi.org/10.3390/microorganisms9050999
Chicago/Turabian StyleAlonso, Carla Andrea, María de Toro, Fernando de la Cruz, and Carmen Torres. 2021. "Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife" Microorganisms 9, no. 5: 999. https://doi.org/10.3390/microorganisms9050999
APA StyleAlonso, C. A., de Toro, M., de la Cruz, F., & Torres, C. (2021). Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Microorganisms, 9(5), 999. https://doi.org/10.3390/microorganisms9050999