In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation and Identification of Endophytic Fungi
2.3. Secondary Metabolites Extraction
2.3.1. Secondary Metabolites Extraction from Z. lotus Leaves
2.3.2. Secondary Metabolites Extraction from Fungal Endophytes
2.4. In Vitro Biological Activities Testing
2.4.1. Antibacterial Activity
Disc Diffusion Assay
Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.4.2. Antioxidant Assays
DPPH (1,1-Diphenyl-2-Picrylhydrazyl) Assay
Reducing Power Assay
Determination of Total Phenolic Content
2.5. Identification of Bioactive Constituents by GC–MS
2.6. Statistical Analysis
3. Results
3.1. Fungal Strains Identification
3.2. Antibacterial Potential of Extracts
3.3. Antioxidant Potential of Extracts and Phenolic Content
3.3.1. DPPH Assay
3.3.2. Reducing Power Assay
3.3.3. Determination of Total Phenolic Content
3.4. Identification of Bioactive Compounds by GC–MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Amelia, P.; Ayunda, R.; Bahri, S. Screening of antibacterial activities of the endophytic fungi isolated from the leaves of Medinilla speciosa Blume. J. Fitofarmaka Indones. 2021, 8, 24–28. [Google Scholar] [CrossRef]
- Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 2015, 82, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.J.; White, J.F.J.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. N. Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Potshangbam, M.; Devi, S.I.; Sahoo, D.; Strobel, G.A. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front. Microbiol. 2017, 8, 325. [Google Scholar] [CrossRef]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef]
- Perlatti, B.; Lan, N.; Jiang, Y.; An, Z.; Bills, G. Identification of secondary metabolites from Aspergillus pachycristatus by untargeted UPLC-ESI-HRMS/MS and genome mining. Molecules 2020, 25, 913. [Google Scholar] [CrossRef]
- Bhatia, D.R.; Dhar, P.; Mutalik, V.; Deshmukh, S.K.; Verekar, S.A.; Desai, D.C.; Kshirsagar, R.; Thiagarajan, P.; Agarwal, V. Anticancer activity of Ophiobolin A, isolated from the endophytic fungus Bipolaris setariae. Nat. Prod. Res. 2016, 30, 1455–1458. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Ma, Y.; Zhang, W.; Hu, L.; Feng, X.; Li, X.; Tang, X. Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro. Oncol. Rep. 2017, 37, 1793–1803. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef]
- Kumar, A.; Patil, D.; Rajamohanan, P.R.; Ahmad, A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 2013, 8, e71805. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, P.S.; Tan, Q.; Tan, X.; Yuan, M.; Luo, J.; He, M. Diversity and chemical fingerprinting of endo-metabolomes from endophytes associated with Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang possessing antibacterial activity against multidrug resistant bacterial pathogens. J. Infect. Public. Health 2021, 14, 1917–1926. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, S.; Sathiavelu, M.; Arunachalam, S. In vitro antioxidant and antibacterial activity of endophytic fungi isolated from Mussaenda luteola. J. App. Pharm. Sci. 2017, 7, 234–238. [Google Scholar] [CrossRef]
- de Silva, D.D.; Rapior, S.; Sudarman, E.; Stadler, M.; Xu, J.; Alias, S.A.; Hyde, K.D. Bioactive metabolites from macrofungi: Ethnopharmacology, biological activities and chemistry. Fungal Divers 2013, 62, 1–40. [Google Scholar] [CrossRef]
- Wen, J.; Okyere, S.K.; Wang, J.; Huang, R.; Wang, Y.; Liu, L.; Nong, X.; Hu, Y. Endophytic fungi isolated from Ageratina adenophora exhibits potential antimicrobial activity against multidrug-resistant Staphylococcus aureus. Plants 2023, 12, 650. [Google Scholar] [CrossRef]
- Benammar, C.; Hichami, A.; Yessoufou, A.; Simonin, A.M.; Allali, H.; Khan, N. Zizyphus lotus L. (Desf.) modulates antioxidant activity and human T-cell proliferation. BMC Complement. Altern. Med. 2010, 10, 54. [Google Scholar] [CrossRef]
- Belmaghraoui, W.; El Madani, N.; Manni, A.; Harir, M.; Filali-Maltouf, A.; El Hajjaji, S.; El Fatni, O.K. Total phenolic and flavonoid content, antioxidant and antibacterial activity of Ziziphus lotus from morocco. Pharmacologyonline 2018, 3, 176–183. [Google Scholar]
- Lahlou, M.; El Mahi, M.; Hamamouchi, J. Evaluation des activités antifongique et molluscicide de Zizyphus lotus (L.) Desf. du Maroc Evaluation of antifungal and mollusuicidial activities of Moroccan Zizyphus lotus (L.) Desf. Ann. Pharm. Fr. 2002, 60, 410–414. [Google Scholar]
- Borgi, W.; Ghedira, K.; Chouchane, N. Antiinflammatory and analgesic activities of Zizyphus lotus root barks. Fitoterapia 2007, 78, 16–19. [Google Scholar] [CrossRef]
- Wahida, B.; Abderrahman, B.; Nabil, C. Antiulcerogenic activity of Zizyphus lotus (L.) extracts. J. Ethnopharmacol. 2007, 112, 228–231. [Google Scholar] [CrossRef]
- Ghazi-Yaker, A.; Kraak, B.; Houbraken, J.; Houali, K.; Saadoun, N. Diversity of Epiphytic and Endophytic Fungal Communities Associated with Leaves of Ziziphus lotus (L.) Lam. from Algeria. Pol. J. Ecol. 2023, 70, 159–174. [Google Scholar] [CrossRef]
- Lee, C.; Li, W.; Bang, S.; Lee, S.J.; Kang, N.-y.; Kim, S.; Kim, T.I.; Go, Y.; Shim, S.H. Secondary metabolites of the endophytic fungus Alternaria alternata JS0515 isolated from Vitex rotundifolia and their effects on pyruvate dehydrogenase activity. Molecules 2019, 24, 4450. [Google Scholar] [CrossRef] [PubMed]
- Pansanit, A.; Pripdeevech, P. Antibacterial secondary metabolites from an endophytic fungus, Arthrinium sp. MFLUCC16-1053 isolated from Zingiber cassumunar. Mycology 2018, 9, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Ismaili, H.; Milella, L.; Fkih-Tetouani, S.; Ilidrissi, A.; Camporese, A.; Sosa, S.; Altinier, G.; Della, L.R.; Aquino, R. In vivo topical anti-inflammatory and in vitro antioxidant activities of two extracts of Thymus satureioides leaves. J. Ethnopharmacol. 2004, 91, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Yadav, A.; Yadav, J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med. 2014, 7, S256–S261. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef]
- Cruz, J.S.; da Silva, C.A.; Hamerski, L. Natural products from endophytic fungi associated with Rubiaceae Species. J. Fungi 2020, 6, 128. [Google Scholar] [CrossRef]
- El-hawary, S.S.; Moawad, A.S.; Bahr, H.S.; Abdelmohsen, U.R.; Mohammed, R. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 2020, 10, 22058–22079. [Google Scholar] [CrossRef]
- Wu, C.; Wang, W.; Wang, X.; Shahid, H.; Yang, Y.; Wang, Y.; Wang, S.; Shan, T. Diversity and communities of culturable endophytic fungi from the root holoparasite Balanophora polyandra Griff. and their antibacterial and antioxidant activities. Ann. Microbiol. 2022, 72, 19. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Plants and endophytes: Equal partners in secondary metabolite production? Biotechnol. Lett. 2015, 37, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Rhoden, S.A.; Bernardi-Wenzel, J.; Orlandelli, R.C.; Azevedo, J.L.; Pamphile, J.A. Antimicrobial activity of crude extracts of endophytic fungi isolated from medicinal plant Sapindus saponaria L. J. App. Pharm. Sci. 2012, 2, 035–040. [Google Scholar] [CrossRef]
- Scholz, E.; Rimpler, H. Proanthocyanidins from Krameria triandra root. Planta Med. 1989, 55, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Moure, A.; Domınguez, H.; Parajo, J.C. Fractionation of antioxidants from autohydrolysis of barley husks. J. Agric. Food Chem. 2008, 56, 10651–10659. [Google Scholar] [CrossRef]
- Katoch, M.; Singh, G.; Sharma, S.; Gupta, N.; Sangwan, P.L.; Saxena, A.K. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae). BMC Complement. Altern. Med. 2014, 14, 52. [Google Scholar] [CrossRef]
- Schulz, B.; Hass, S.; Junker, C.; Andrée, N.; Schobert, M. Fungal endophytes are involved in multiple balanced antagonisms. Curr. Sci. 2015, 109, 39–45. Available online: https://www.jstor.org/stable/24905689 (accessed on 23 August 2024).
- Chatterjee, S.; Ghosh, R.; Mandal, N.C. Production of bioactive compounds with bactericidal and antioxidant potential by endophytic fungus Alternaria alternata AE1 isolated from Azadirachta indica A. Juss. PLoS ONE 2019, 14, e0214744. [Google Scholar] [CrossRef]
- Martelli, G.; Giacomini, D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur. J. Med. Chem. 2018, 158, 91–105. [Google Scholar] [CrossRef]
- Rocha, P.d.S.d.; Paula, V.M.B.; Olinto, S.C.F.; dos Santos, E.L.; de Picoli Souza, K.; Estevinho, L.M. Diversity, chemical constituents and biological activities of endophytic fungi isolated from Schinus terebinthifolius Raddi. Microorganisms 2020, 8, 859. [Google Scholar] [CrossRef]
- Yahia, Y.; Benabderrahim, M.A.; Tlili, N.; Bagues, M.; Nagaz, K. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species. PLoS ONE 2020, 15, e0232599. [Google Scholar] [CrossRef]
- Pandey, B.; Ghimire, P.; Agrawal, V.P. Studies on the antibacterial activity of the actinomycetes isolated from the Khumbu region of Nepal. J. Biol. Sci. 2004, 23, 44–53. [Google Scholar]
- Ogundare, A.O.; Adetuyi, F.C.; Akinyosoye, F.A. Antimicrobial activities of Vernonia tenoreana. Afr. J. Biotechnol. 2006, 5, 1663–1668. [Google Scholar]
- Du, W.; Yao, Z.; Li, J.; Sun, C.; Xia, J.; Wang, B.; Shi, D.; Ren, L. Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PLoS ONE 2020, 15, e0229589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Qu, H.R.; Bao, S.S.; Deng, Z.S.; Guo, Z.Y. Secondary metabolites from the endophytic fungus xylariales sp. and their antimicrobial activity. Chem. Nat. Compd. 2020, 56, 530–532. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sunaga, R.; Furihata, K.; Morisaki, N.; Iwasaki, S. Isolation and structures of an antifungal antibiotic, fusarielin A, and related compounds produced by a Fusarium sp. J. Antibiot. 1995, 48, 42–52. [Google Scholar] [CrossRef]
- Kornsakulkarn, J.; Dolsophon, K.; Boonyuen, N.; Boonruangprapa, T.; Rachtawee, P.; Prabpai, S.; Kongsaeree, P.; Thongpanchang, C. Dihydronaphthalenones from endophytic fungus Fusarium sp. BCC14842. Tetrahedron 2011, 67, 7540–7547. [Google Scholar] [CrossRef]
- Tayung, K.; Jha, D.K. Antimicrobial endophytic fungal assemblages inhabiting bark of Taxus baccata L. of Indo-Burma mega biodiversity hotspot. Indian. J. Microbiol. 2010, 50 (Suppl. 1), 74–81. [Google Scholar] [CrossRef]
- Lu, Y.; Qiu, J.; Wang, S.; Xu, J.; Ma, G.; Shi, J.; Bao, Z. Species diversity and toxigenic potential of Fusarium incarnatum-equiseti Species Complex. Isolates from Rice and Soybean in China. Plant Dis. 2021, 105, 2628–2636. [Google Scholar] [CrossRef]
- Abd Elghafar, R.Y.; Amin, B.H.; Hashem, A.H.; Sehim, A.E. Promising endophytic Alternaria alternata from leaves of Ziziphus spina-christi: Phytochemical analyses, antimicrobial and antioxidant activities. Appl. Biochem. Biotechnol. 2022, 194, 3984–4001. [Google Scholar] [CrossRef]
- Kim, J.A.; Jeon, J.; Park, S.Y.; Kim, K.T.; Choi, G.; Nguyen, H.T.; Jeon, S.J.; Lee, H.B.; Bae, C.H.; Yang, H.S.; et al. Draft genome sequence of Aspergillus persii NIBRFGC000004109, which has antibacterial activity against plant-pathogenic bacteria. Genome Announc. 2017, 5, e00932-17. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, and Eugenia jambolana Lam. trees. Food Chem. 2007, 104, 1106–1114. [Google Scholar] [CrossRef]
- Nuraini, F.R.; Setyaningsih, R.; Susilowati, A. Antioxidant activity of bioactive compound produced by endophytic fungi isolated from endemic plant of South Kalimantan Mangifera casturi Kosterm. In Proceedings of the International Conference on Biology and Applied Science, Malang, Indonesia, 13–14 March 2019. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Modulation of the antioxidant activity of phenols by non-covalent interactions. Org. Biomol. Chem. 2012, 10, 4147–4158. [Google Scholar] [CrossRef] [PubMed]
- Al-Mansoub, M.A.; Asif, M.; Revadigar, V.; Hammad, M.A.; Chear, N.J.Y.; Hamdan, M.R.; Abdul Majid, A.; Asmawi, M.; Murugaiyah, V. Chemical composition, antiproliferative and antioxidant attributes of ethanolic extract of resinous sediment from Etlingera elatior (Jack.) inflorescence. Braz. J. Pharm. Sci. 2021, 57, e18954. [Google Scholar] [CrossRef]
- Khiralla, A.; Mohamed, I.; Thomas, J.; Mignard, B.; Spina, R.; Yagi, S.; Laurain-Mattar, D. A pilot study of antioxidant potential of endophytic fungi from some sudanese medicinal plants. Asian Pac. J. Trop. Med. 2015, 8, 701–704. [Google Scholar] [CrossRef]
- Fernandes, M.R.V.; Costa e Silva, T.A.; Pfenning, L.H.; da Costa-Neto, C.M.; Heinrich, T.A.; de Alencar, S.M.; de Lima, M.A.; IkegakiI, M. Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L. Braz. J. Pharm. Sci. 2009, 45, 677–685. [Google Scholar] [CrossRef]
- Dhibi, M.; Amri, Z.; Bhouri, A.; Hammami, S.; Hammami, M. Comparative study of the phenolic profile and antioxidant activities of moringa (Moringa oleifera Lam.) and jujube (Ziziphus lotus Linn.) leaf extracts and their protective effects in frying stability of corn oil. Meas. Food 2022, 7, 100045. [Google Scholar] [CrossRef]
- Sauvet, G.; Fortuniak, W.; Kazmierski, K.; Chojnowski, J. Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J. Polym. Sci., Part. A Polym. Chem. 2003, 41, 2939–2948. [Google Scholar] [CrossRef]
- Liang, J.; Barnes, K.; Akdag, A.; Worley, S.D.; Lee, J.; Broughton, R.M.; Huang, T.S. Improved antimicrobial siloxane. Ind. Eng. 2007, 46, 1861–1866. [Google Scholar] [CrossRef]
- Mohy El-Din, S.M.; El-Ahwany, A.M.D. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J. Taibah Univ. Sci. 2016, 10, 471–484. [Google Scholar] [CrossRef]
- Hai, N.T.; Diep, C.N. Bioactive secondary metabolites from marine Streptomyces isolated from mangrove forest soil of Can Gio, HoChiMinh City, Vietnam. Int. J. Pharm. Clin. Res. 2022, 14, 07–15. [Google Scholar]
- Rahamouz-Haghighi, S.; Bagheri, K.; Mohsen-Pour, N.; Sharafi, A. In vitro evaluation of cytotoxicity and antibacterial activities of ribwort plantain (Plantago lanceolata L.) root fractions and phytochemical analysis by Gas Chromatography-Mass Spectrometry. Arch. Razi Inst. 2022, 77, 2131–2143. [Google Scholar] [PubMed]
- Houas, N.; Kitouni, S.; Chafai, N.; Ghedjati, S.; Djenane, M.; Tounsi, A. New bi-phosphonate derivative: Synthesis, characterization, antioxidant activity in vitro and via cyclic voltammetry mode and evaluation of its inhibition of SARS-CoV-2 main protease. J. Mol. Struct. 2023, 1284, 135356. [Google Scholar] [CrossRef] [PubMed]
- De, M.; Sharma, L.; Acharya, C.K.A.A. Comprehensive chemical characterization of leaves of five potential medicinal plants in Paschim Medinipur District, W.B., India. Int. J. Exp. Res. Rev. 2023, 36, 20–36. [Google Scholar] [CrossRef]
- Sharma, D.; Narasimhan, B.; Kumar, P.; Judge, V.; Narang, R.; De Clercq, E.; Balzarini, J. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur. J. Med. Chem. 2009, 44, 2347–2353. [Google Scholar] [CrossRef]
- Singh, D.; Kharb, R.; Sharma, S.K. Schiff’s base imidazole derivatives synthesis and evaluation for their anti-inflammatory activity. Orient. J. Chem. 2024, 40, 152–164. [Google Scholar] [CrossRef]
- Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. Imidazoles as potential anticancer agents. Med. Chem. Comm. 2017, 8, 1742–1773. [Google Scholar] [CrossRef]
- Pandey, J.; Tiwari, V.K.; Verma, S.S.; Chaturvedi, V.; Bhatnagar, S.; Sinha, S.; Gaikwad, A.N.; Tripathi, R.P. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem. 2009, 44, 3350–3355. [Google Scholar] [CrossRef]
- Pu, Z.H.; Zhong, Y.Q.; Yin, Z.Q. Antibacterial activity of 9-octadecanoic acid hexadecanoic acid-Tetrahydrofuran-3,4-diylester from Neem oil. Agr. Sci. China 2010, 9, 1236–1240. [Google Scholar] [CrossRef]
- Ismaiel, A.A.; Papenbrock, J. Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity. Agriculture 2015, 5, 492–537. [Google Scholar] [CrossRef]
- Alsberg, C.; Black, O.F. Contributions to the Study of Maize Deterioration: Biochemical and Toxicological Investigations of Penicillium puberulum and Penicillium stoloniferum; U.S. Government Publishing Office: Washington, DC, USA, 1913; p. 47.
- Ezzat, S.M.; El-Sayed, E.A.; Abou El-Hawa, M.I.; Ismaiel, A.A. Morphological and ultrastructural studies for the biological action of penicillic acid on some bacterial species. Res. J. Microbiol. 2007, 2, 303–314. Available online: https://scialert.net/abstract/?doi=jm.2007.303.314 (accessed on 29 April 2024).
- Kang, S.W.; Kim, S.W. New antifungal activity of penicillic acid against Phytophthora species. Biotechnol. Lett. 2004, 26, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Visagie, C.M.; Varga, J.; Houbraken, J.; Meijer, M.; Kocsubé, S.; Yilmaz, N.; Fotedar, R.; Seifert, K.A.; Frisvad, J.C.; Samson, R.A. Ochratoxin production and taxonomy of the yellow aspergilli (Aspergillus section Circumdati). Stud. Mycol. 2014, 78, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Yu, N.H.; Jeon, S.J.; Lee, H.W.; Bae, C.H.; Yeo, J.H.; Lee, H.B.; Kim, I.S.; Park, H.W.; Kim, J.C. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett. Appl. Microbiol. 2016, 62, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Obana, H.; Kumeda, Y.; Nishimune, T. Aspergillus ochraceus Production of 5,6-Dihydropenicillic Acid in Culture and Foods. J. Food Prot. 1995, 58, 519–523. [Google Scholar] [CrossRef]
- Sorrenti, V.; Salerno, L.; Di Giacomo, C.; Acquaviva, R.; Siracusa, M.A.; Vanella, A. Imidazole derivatives as antioxidants and selective inhibitors of nNOS. Nitric Oxide 2006, 14, 45–50. [Google Scholar] [CrossRef]
- Collinsová, M.; Jirácek, J. Phosphinic acid compounds in biochemistry, biology and medicine. Curr. Med. Chem. 2000, 7, 629–647. [Google Scholar] [CrossRef]
- Abdou, M.M.; O’Neill, P.M.; Amigues, E.; Matziari, M. Phosphinic acids: Current status and potential for drug discovery. Drug Discov. Today 2019, 24, 916–929. [Google Scholar] [CrossRef]
- Awakan, O.J.; Malomo, S.O.; Adejare, A.A.; Igunnu, A.; Atolani, O.; Adebayo, A.H.; Owoyele, B.V. Anti-inflammatory and bronchodilatory constituents of leaf extracts of Anacardium occidentale L. in animal models. J. Integr. Med. 2018, 16, 62–70. [Google Scholar] [CrossRef]
- Padmashree, M.S.; Ashwathanarayana, R.; Raja, N.; Roopa, B. Antioxidant, cytotoxic and nutritive properties of Ipomoea staphylina Roem & Schult. plant extracts with preliminary phytochemical and GCMS analysis. Asian J. Pharm. Pharmacol. 2018, 4, 473–492. [Google Scholar]
- Moon, H.-J.; Jeya, M.; Kim, I.-W.; Lee, J.-K. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 2010, 86, 1017–1025. [Google Scholar] [CrossRef]
- Israa, A.; Mohammed, H.; Imad, H. Analysis of Bioactive Compounds of Methanolic Leaves extract of Mentha pulegium Using Gas Chromatography-Mass Spectrometry (GC-MS) Technique. Int. J. Pharm. Qual. Assur. 2017, 8, 174–182. [Google Scholar] [CrossRef]
- Altameme, H.J.; Hameed, I.H.; Hamza, L.F. Anethum graveolens: Physicochemical properties, medicinal uses, antimicrobial effects, antioxidant effect, antiinflammatory and analgesic effects: A review. Int. J. Pharm. Qual. Assur. 2017, 8, 88–91. [Google Scholar] [CrossRef]
- Piemontese, L.; Vitucci, G.; Catto, M.; Laghezza, A.; Perna, F.M.; Rullo, M.; Loiodice, F.; Capriati, V.; Solfrizzo, M. Natural scaffolds with multi-target activity for the potential treatment of Alzheimer’s disease. Molecules 2018, 23, 2182. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Fu, L.; Peng, Y.; Zhou, L. Metabolites from Alternaria Fungi and Their Bioactivities. Molecules 2013, 18, 5891–5935. [Google Scholar] [CrossRef]
- Miller, F.; Rightsel, W.; Sloan, B.; Ehrlich, J.; French, J.; Bartz, Q.; Dixon, G.J. Antiviral Activity of Tenuazonic Acid. Nature 1963, 200, 1338–1339. [Google Scholar] [CrossRef]
- Gitterman, C.O. Antitumor, cytotoxic, and antibacterial activities of tenuazonic acid and congeneric tetramic acids. J. Med. Chem. 1965, 8, 483–486. [Google Scholar] [CrossRef]
- Mousa, W.K.; Schwan, A.; Davidson, J.; Strange, P.; Liu, H.; Zhou, T.; Auzanneau, F.-I.; Raizada, M.N. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Front. Microbiol. 2015, 6, 1157. [Google Scholar] [CrossRef]
- Al Bratty, M.; Makeen, H.A.; Alhazmi, H.A.; Syame, S.M.; Abdalla, A.N.; Homeida, H.E.; Sultana, S.; Ahsan, W.; Khalid, A. Phytochemical, cytotoxic, and antimicrobial evaluation of the fruits of miswak plant, Salvadora persica L. J. Chem. 2020, 2020, 4521951. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Smedsgaard, J.; Larsen, T.O.; Samson, R.A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 2004, 49, 201–242. [Google Scholar]
- Chen, C.Y. Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) from red alga—Bangia atropurpurea. Water Res. 2004, 38, 1014–1018. [Google Scholar] [CrossRef]
- El-Sayed, O.H.; Asker, M.; Shash, S.M.; Hamed, S.R. Isolation, structure elucidation and biological activity of Di-(2-ethylhexyl) phthalate produced by Penicillium janthinellum 62. Int. J. Chemtech Res. 2015, 8, 58–66. [Google Scholar]
- Kalinovskaya, N.I.; Romanenko, L.A.; Kalinovsky, A.I. Antibacterial low-molecular-weight compounds produced by the marine bacterium Rheinheimera japonica KMM 9513 T. Antonie Leeuwenhoek 2017, 110, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, A.; Prabhakar, P.; Vijayalakshmi, M.; Venkateswarlu, Y. Production of bioactive metabolites by Nocardia levis MK-VL_113. Lett. Appl. Microbiol. 2009, 49, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Al-Bari, M.A.A.; Sayeed, M.A.; Rahman, M.S.; Mossadik, M.A. Characterization and antimicrobial activities of a phthalic acid derivative produced by Streptomyces bangladeshiensis, a novel species collected in Bangladesh. Res. J. Med. Med. Sci. 2006, 1, 77–81. [Google Scholar]
- Javed, M.R.; Salman, M.; Tariq, A.; Tawab, A.; Zahoor, M.K.; Naheed, S.; Shahid, M.; Ijaz, A.; Ali, H. The antibacterial and larvicidal potential of Bis-(2-Ethylhexyl) Phthalate from Lactiplantibacillus plantarum. Molecules 2022, 27, 7220. [Google Scholar] [CrossRef]
- Habib, M.R.; Karim, M.R. Antimicrobial and cytotoxic activity of Di-(2-ethylhexyl) Phthalate and Anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) Flower. Mycobiology 2009, 37, 31–36. [Google Scholar] [CrossRef]
- Kdimy, A.; Kim, S.J.; Ali, Z.; Khan, M.I.H.; Tripathi, S.K.; El Hajjaji, S.; Le, H.V. Isolation of two plasticizers, Bis(2-ethylhexyl) Terephthalate and Bis(2-ethylhexyl) Phthalate, from Capparis spinosa L. leaves. Chem. Biodivers. 2023, 20, e202300903. [Google Scholar] [CrossRef]
- Rahmayanti, F.; Suniarti, D.F.; Masud, Z.A.; Wimardhani, Y.S.; Subita, G.P. Phytochemical compounds of Garcinia Mangostana-Linn Pericarp fractions from ethanolic extract. J. Int. Dent. Med. Res. 2017, 10, 48–51. [Google Scholar]
- Gumgumjee, N.M.; Hajar, A.S. Antibacterial activities and GC-MS analysis of phytocomponents of Ehretia abyssinica R. Br. ex Fresen. Int. J. Appl. Biol. Pharm. 2015, 6, 236–241. [Google Scholar]
- Sivakumar, S.R. GC-MS analysis and antibacterial potential of white crystalline solid from red algae Portieria hornemannii against the plant pathogenic bacteria Xanthomnas axonopodis pv. citri (Hasse) Vauterin et al. and Xanthomonas campestris pv. Malvacearum. Int. J. Adv. Res. 2014, 2, 174–183. [Google Scholar]
- Qanash, H.; Yahya, R.; Bakri, M.M.; Bazaid, A.S.; Qanash, S.; Shater, A.F.; Abdelghany, T.M. Anticancer, antioxidant, antiviral and antimicrobial activities of Kei Apple (Dovyalis caffra) fruit. Sci. Rep. 2022, 12, 5914. [Google Scholar] [CrossRef] [PubMed]
- Acar, C.; Yalçın, G.; Ertan-Bolelli, T.; Kaynak, O.F.; Ökten, S.; Şener, F.; Yıldız, İ. Synthesis and molecular docking studies of some novel antimicrobial benzamides. Bioorg. Chem. 2020, 94, 103368. [Google Scholar] [CrossRef] [PubMed]
- Puskullu, M.O.; Shirinzadeh, H.; Nenni, M.; Gurer-Orhan, H.; Suzen, S. Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehydehydrazone derivatives: Bioisosteric melatonin analogues. J. Enzym. Inhib. Med. Chem. 2015, 31, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Musthafa, K.S.; Sahu, S.K.; Ravi, A.V.; Kathiresan, K. Anti-quorum sensing potential of the mangrove Rhizophora annamalayana. World J. Microbiol. Biotechnol. 2013, 29, 1851–1858. [Google Scholar] [CrossRef]
- Jouda, J.B.; Tamokou, J.; Mbazoa, C.D.; Douala-Meli, C.; Sarkar, P.; Bag, P.K.; Wandji, J. Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in garcinia kola (heckel) nut. BMC Complement. Altern. Med. 2016, 16, 462. [Google Scholar] [CrossRef]
- Elleuch, L.; Shaaban, M.; Smaoui, S.; Mellouli, L.; Karray-Rebai, I.; Fguira, L.F.B.; Shaaban, K.A.; Laatsch, H. Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl. Biochem. Biotechnol. 2010, 162, 579–593. [Google Scholar] [CrossRef]
- Xue-Na, B.; Cheng, J.; Liang, W.; LanQing, M.; Yu-Bo, L.; Guang-Lu, S.; You-Nian, W. Antifungal activity of extracts by supercritical carbon dioxide extraction from roots of Stellera chamaejasme L. and analysis of their constituents using GC-MS. In Advances in Intelligent and Soft Computing; Zhu, E., Sambath, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 134, pp. 653–662. [Google Scholar] [CrossRef]
- Germaine, K.; Keogh, E.; Garcia-Cabellos, G.; Borremans, B.; Van Der Lelie, D.; Barac, T.; Oeyen, L.; Vangronsveld, J.; Moore, F.P.; Moore, E.R.; et al. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol. 2004, 48, 109–118. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, C.-C. Endophytes: A potential resource for biosynthesis, biotransformation, and biodegradation. Ann. Microbiol. 2011, 61, 207–215. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Y.; Sun, X.; Tang, K. Bioactive natural products from endophytes: A review. Appl. Biochem. Microbiol. 2008, 44, 136–142. [Google Scholar] [CrossRef]
- Strobel, G.A.; Hess, W.M.; Ford, E.; Sidhu, R.S.; Yang, X. Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol. Biotechnol. 1996, 17, 417–423. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Lu, H.; Zheng, Z.; Huang, Y.; Su, W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol. Lett. 2000, 193, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Kwong, T.N.; Qian, P.Y. Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium saccharicola. Appl. Microbiol. Biotechnol. 2006, 72, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Qu, X.; Chen, F.; Bao, J.; Zhang, G.; Luo, Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 2013, 97, 9365–9375. [Google Scholar] [CrossRef]
- Nielsen, M.L.; Nielsen, J.B.; Rank, C.; Klejnstrup, M.L.; Holm, D.M.K.; Brogaard, K.H.; Hansen, B.G.; Frisvad, J.C.; Larsen, T.O.; Mortensen, U.H. A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol. Lett. 2011, 321, 157–166. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Larsen, T.O. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Front. Microbiol. 2016, 6, 1485. [Google Scholar] [CrossRef]
- Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites—Strategies to activate silent gene clusters. Fungal Genet. Biol. 2011, 48, 15–22. [Google Scholar] [CrossRef]
- Zuck, K.M.; Shipley, S.; Newman, D.J. Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J. Nat. Prod. 2011, 74, 1653–1657. [Google Scholar] [CrossRef]
- Netzker, T.; Fischer, J.; Weber, J.; Mattem, D.J.; Konig, C.C.; Valiante, V.; Schroeckh, V.; Brakhage, A.A. Microbial communication lading to the activation of silent fungal secondary metabolite gene clusters. Front. Microbiol. 2015, 6, 299. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Larsen, T.O.; de Vries, R.; Meijer, M.; Houbraken, J.; Cabañes, F.J.; Ehrlich, K.; Samson, R.A. Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Stud. Mycol. 2007, 59, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Loizzo, M.R.; Ademiluyi, A.O.; Sharifi-Rad, R.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.; Ribeiro-Santos, R.; Sanches Silva, A. Essential oils from plants: Industrial applications and biotechnological production. In Exploring Plant Cells for the Production of Compounds of Interest; Malik, S., Ed.; Springer: Cham, Switzerland, 2021; pp. 145–170. [Google Scholar] [CrossRef]
- Samson, R.A.; Varga, J.; Meijer, M.; Frisvad, J.C. New taxa in Aspergillus section Usti. Stud. Mycol. 2011, 69, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.J.; Frisvad, J.C.; Sun, B.D.; Varga, J.; Kocsubé, S.; Dijksterhuis, J.; Kim, D.H.; Hong, S.-B.; Houbraken, J.; Samson, R.A. Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Stud. Mycol. 2016, 84, 1–118. [Google Scholar] [CrossRef]
- Sun, B.D.; Houbraken, J.; Frisvad, J.C.; Jiang, X.Z.; Chen, A.J.; Samson, R.A. New species in Aspergillus section Usti and an overview of Aspergillus section Cavernicolarum. Int. J. Syst. Evol. Microbiol. 2020, 70, 5401–5416. [Google Scholar] [CrossRef]
Extracts | Inhibition Zones (mm ± ET) Corresponding to Each Bacteria | ||||
---|---|---|---|---|---|
Staphylococcus aureus ATCC 25923 | Staphylococcus aureus MU50 | Enterococcus faecalis WDCM00009 | Escherichia coli ATCC 25922 | Pseudomonas aeruginosa ATCC 27853 ATCC 27853 | |
Ziziphus lotus | 8 ± 00 | 8 ± 00 | 00 ± 00 | 00 ± 00 | 00 ± 00 |
Fusarium incarnatum–equiseti complex | 20 ± 00 | 20 ± 00 | 20 ± 00 | 15 ± 1 | 00 ± 00 |
Aspergillus cavernicola | 32 ± 00 | 31.33 ± 1.15 | 30 ± 00 | 25 ± 00 | 9 ± 00 |
Aspergillus persii | 27 ± 1 | 27 ± 1 | 26 ± 00 | 17.33 ± 2 | 00 ± 00 |
Cladosporium asperlatum | 23.33 ± 1.15 | 21.66 ± 1.52 | 24 ± 00 | 21 ± 2 | 00 ± 00 |
Alternaria alternata | 27 ± 1 | 27 ± 1 | 25 ± 1 | 24.66 ± 12 | 00 ± 00 |
DMSO | 00 ± 00 | 00 ± 00 | 00 ± 00 | 00 ± 00 | 00 ± 00 |
Chloramphenicol | 35.66 ± 4.61 | 31 ± 1 | 25 ± 00 | 25 ± 00 | 12 ± 1 |
Extracts | Staphylococcus aureus ATCC 25923 | Staphylococcus aureus MU50 | Enterococcus faecalis WDCM00009 | Escherichia coli ATCC 25922 | Pseudomonas aeruginosa ATCC 27853 | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Fusarium incarnatum–equiseti complex | 1.25 | >5 | 1.25 | >5 | 1.25 | >5 | 0.625 | >5 | - | - |
Aspergillus cavernicola | 0.078 | 1.25 | 0.312 | 1.25 | 0.078 | 1.25 | 0.078 | 5 | 0.625 | 2.5 |
Aspergillus persii | 0.312 | 5 | 1.25 | >5 | 0.078 | 2.5 | 0.312 | 2.5 | - | - |
Cladosporium asperlatum | 1.25 | 5 | 2.5 | >5 | 5 | >5 | 0.312 | 5 | - | - |
Alternaria alternata | 0.312 | 5 | 0.312 | 2.5 | 0.625 | 2.5 | 0.625 | >5 | - | - |
N° | Compound Name | Area Percent | |||
---|---|---|---|---|---|
Z. lotus | A. Cavernicola | A. Persii | A. Alternata | ||
1 | Compounds found in the four extracts analyzed | 5.7404 | 0.9913 | 0.907 | 4.7928 |
Cyclohexasiloxane, dodecamethyl- | |||||
2 | Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadeca methyl- | 4.7606 | 2.5001 | 0.6781 | 6.7681 |
3 | Tetracosamethyl-cyclododecasiloxane | 8.2217 | 2.4954 | 2.8193 | 11.5408 |
4 | Heptasiloxane, hexadecamethyl- | 11.1441 | 2.1758 | 4.4951 | 0.876 |
5 | 1,1,1,5,7,7,7-Heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane | 17.5764 | 2.8554 | 5.0515 | 7.376 |
6 | Cyclononasiloxane, octadecamethyl- | 2.0831 | 0.7289 | 2.0313 | 8.2317 |
7 | Compounds found in only three extracts | 12.4779 | 1.0161 | 1.1417 | - |
3,4-Dihydroxymandelic acid, 4TMS derivative | |||||
8 | Cyclooctasiloxane, hexadecamethyl- | 16.4283 | - | 4.1513 | 9.5733 |
9 | Compounds found in only two extracts | 1.3423 | - | 0.6849 | - |
Hexanedioic acid, bis(2-ethylhexyl) ester | |||||
10 | 3,4-Dihydroxyphenylglycol, 4TMS derivative | 3.5736 | - | - | 0.1525 |
11 | Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13- tetradecamethyl- | 6.3661 | - | - | 2.2806 |
12 | Penicillic acid (2,5-Hexadienoic acid, 3-methoxy-5-methyl-4-oxo- | - | 0.5054 | 11.5193 | - |
13 | Succinic acid, ethyl pent-4-en-2-yl ester | - | 0.8701 | 0.5604 | - |
14 | 5,6-Dihydropenicillic acid | - | 7.1999 | 0.6153 | - |
15 | Cholestan-5-en-3-ol piperidinomethyl ether | - | 6.13 | 1.4362 | |
16 | Phosphinic acid, (1,1-dimethylethyl)[4-(1,1-dimethylethyl)phenyl]- | - | 4.6934 | 15.0705 | - |
17 | Compounds found in only one extract | 0.3478 | - | - | - |
Cytochalasin H | |||||
18 | 6-chlorohexanoic acid 3-methylbuttyl ester | 0.459 | - | - | - |
19 | Furan, 2-(dichloromethyl)-tetrahydro- | 0.948 | - | - | - |
20 | Hexanoic acid, 2-methyl- | 0.2581 | - | - | - |
21 | Phthalic acid, 6-ethyl-3-octyl butyl ester | 1.1848 | - | - | - |
22 | 2,5-Dihydroxybenzoic acid, 3TMS derivative | 6.1423 | - | - | - |
23 | 2,3-Dimethyl-2-heptene | - | 8.4199 | - | - |
24 | Hexadecanoic acid, 1-[[[(2-aminoethoxy) hydroxy phosphinyl]oxy]methyl]-1,2-ethanediyl ester | - | 0.6677 | - | - |
25 | 5-Hydroxy-4-methoxy-5-(prop-1-en-2-yl)furan-2(5H)-one | - | 0.5835 | - | - |
26 | 2-Nonen-4-one | - | 1.4811 | - | - |
27 | 2-(4-Ethoxyanilino)-N-propylpropanamide, Ac derivative | - | 1.0839 | - | - |
28 | Butylphosphonic acid, 2-ethylhexyl propyl ester | - | 37.468 | - | - |
29 | 4-tert-Octylphenol, TMS derivative | - | 10.892 | - | - |
30 | 1H-Imidazole, 1-(1-oxooctadecyl)- | - | 0.5937 | - | - |
31 | 2-(1-Methylpiperidin-2-yl) ethanol | - | 0.7136 | - | - |
32 | 4-(4-Hydroxyphenyl)-4-methyl-2-pentanone, TMS derivative | - | 0.3224 | - | - |
33 | Sydowinin A, 2TMS derivative | - | 1.322 | - | - |
34 | Hexanedioic acid, dioctyl ester | - | 0.4746 | - | - |
35 | Phenanthrene-10-ethanamine, 3-bromo-á-hydroxy-N,N-diheptyl-, O,O-diphenylphosphate | - | 0.3118 | - | - |
36 | Cyclodecasiloxane, eicosamethyl- | - | 1.624 | - | - |
37 | Cyclopentane, 1-acetyl-1,2-epoxy- | - | - | 0.4226 | - |
38 | Flucytosine | - | - | 1.6921 | - |
39 | 2-Benzyl-3-methoxycyclopropanecarboxylic acid, methyl ester | - | - | 1.0194 | - |
40 | Succinic acid, ethyl 4-methylhept-3-yl ester | - | - | 1.8956 | - |
41 | 5-Hydroxy-4-methoxy-3-(1-methoxypropan-2-yl)furan-2(5H)-one | - | - | 0.3608 | - |
42 | Erythritol | - | - | 5.3667 | - |
43 | 2,5-Furandicarboxylic acid, tetrahydro-, dimethyl ester | - | - | 21.4686 | - |
44 | Epinephrine, (á)-, 3TMS derivative | - | - | 0.7011 | - |
45 | l-Alanine, N-(3-fluorobenzoyl)-, heptyl ester | - | - | 10.3966 | - |
46 | Phthalic acid, butyl hex-3-yl ester | - | - | 0.4355 | - |
47 | Ethene-1,1-diamine, 2,2-dinitro- | - | - | 0.5094 | - |
48 | 3-Cholestanol piperidinomethyl ether | - | - | 0.4484 | - |
49 | Pentanedioic acid, 1-(6-bromo-9-phenanthrenyl)-2-(diheptylamino)ethyl monoester | - | - | 0.3404 | - |
50 | Hexasiloxane, tetradecamethyl- | - | - | 2.5974 | - |
51 | Tenuazonic acid | - | - | - | 21.6718 |
52 | Tetratetracontane | - | - | - | 0.1631 |
53 | 8-Cinnamoyl-5,7-dihydroxy-2,2,6-trimethylchromene, 2TMS derivative | - | - | - | 2.8126 |
54 | Octyl tetracosyl ether | - | - | - | 1.4379 |
55 | tert-Hexadecanethiol | - | - | - | 0.921 |
56 | Hexadecane, 1-bromo- | - | - | - | 0.5355 |
57 | Heptacosane | - | - | - | 0.8685 |
58 | Terephthalic acid, bis(2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl) ester | - | - | - | 1.7433 |
59 | 4-Hydroxybenzyl alcohol, 2TBDMS derivative | - | - | - | 0.7761 |
60 | 2-(5-Bromo-pyridin-2-ylamino)-3,3,3-trifluoro-2-(4-methoxy-benzoylamino)-propionic acid methyl ester | - | - | - | 1.1012 |
61 | N-(2-Hydroxy-4-nitrophenyl)-4-methoxybenzamide, TMS derivative | - | - | - | 0.3732 |
62 | Octadecane, 1-iodo- | - | - | - | 0.531 |
63 | Hexadecane | - | - | - | 0.2867 |
64 | Bis(2-ethylhexyl) phthalate | - | - | - | 10.6541 |
65 | [1,3]-Oxazino[5,6-c]quinoline,3-(3,4-methylenedioxybenzyl)-5-trifluoromethyl-3,4(2H)-dihydro-7-methoxy- | - | - | - | 0.2634 |
66 | para-Isopropylbenzoic acid trimethylsilylester | - | - | - | 0.5585 |
67 | Dodecane, 1-iodo- | - | - | - | 0.2764 |
68 | 1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | - | - | - | 0.3119 |
69 | Dodecane, 3-methyl- | - | - | - | 0.0976 |
70 | Supraene | - | - | - | 1.2095 |
71 | Phenol, 2-amino-4,6-bis (1,1-dimethylethyl)- | - | - | - | 0.3795 |
72 | Benzene, 1,1,1-[1-(bromomethyl)-2-methoxy-1-methyl-1-ethanyl-2-ylidene]tris- | - | - | - | 0.9267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazi-Yaker, A.; Kraak, B.; Houbraken, J.; Nabti, E.-h.; Cruz, C.; Saadoun, N.; Houali, K. In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi. Microorganisms 2024, 12, 2671. https://doi.org/10.3390/microorganisms12122671
Ghazi-Yaker A, Kraak B, Houbraken J, Nabti E-h, Cruz C, Saadoun N, Houali K. In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi. Microorganisms. 2024; 12(12):2671. https://doi.org/10.3390/microorganisms12122671
Chicago/Turabian StyleGhazi-Yaker, Amel, Bart Kraak, Jos Houbraken, El-hafid Nabti, Cristina Cruz, Noria Saadoun, and Karim Houali. 2024. "In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi" Microorganisms 12, no. 12: 2671. https://doi.org/10.3390/microorganisms12122671
APA StyleGhazi-Yaker, A., Kraak, B., Houbraken, J., Nabti, E.-h., Cruz, C., Saadoun, N., & Houali, K. (2024). In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi. Microorganisms, 12(12), 2671. https://doi.org/10.3390/microorganisms12122671