Cu3As: Uncommon Crystallographic Features, Low-Temperature Phase Transitions, Thermodynamic and Physical Properties
Abstract
1. Introduction
2. Experimental Methods
2.1. Synthesis
2.2. Sample Characterization
2.3. Structural Characterization
2.4. Thermal Analysis
2.5. Transport and Physical Property Measurements
3. Results and Discussion
3.1. Phase Analysis
3.2. Single-Crystal Structural Study of the Cu3As Compound
3.2.1. RT-Cu3As Crystal Structure
3.2.2. LT-Cu3As Crystal Structure
3.3. DTA and DSC Calorimetry
3.4. Transport and Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Heyding, R.D.; Despault, G.J.G. The copper/arsenic system and the copper arsenide minerals. Can. J. Chem. 1960, 38, 2477–2481. [Google Scholar] [CrossRef]
- Mödlinger, M.; Cziegler, A.; Macció, D.; Schnideritsch, H.; Sabatini, B. Archaeological Arsenical Bronzes and Equilibrium in the As-Cu System. Met. Mater. Trans. B 2018, 49, 2505–2513. [Google Scholar] [CrossRef]
- Subramanian, P.R.; Laughlin, D.E. The As−Cu (Arsenic-Copper) system. Bull. Alloy Phase Diagr. 1988, 9, 605–618. [Google Scholar] [CrossRef]
- Naud, J.; Priest, P. Contribution a l’etude du systeme cuivre-arsenic. Mater. Res. Bull. 1972, 7, 783–792. [Google Scholar] [CrossRef]
- Brauer, G.; Zintl, E. Konstitution von Phosphiden, Arseniden, Antimoniden und Wismutiden des Lithiums, Natriums und Kaliums. Z. Phys. Chem. Abstr. B 1937, 37, 323–352. [Google Scholar] [CrossRef]
- Benda, K.V.; Juza, R. On the Ternary Phases in the System Lithium-Copper-Arsenic. Z. Anorg. Allg. Chem. 1969, 371, 172–192. [Google Scholar] [CrossRef]
- Villars, P.; Cenzual, K. Pearson’s Crystal Data—Crystal Structure Database for Inorganic Compounds; ASM International: Materials Park, OH, USA, 2020. [Google Scholar]
- Iglesias, J.E.; Nowacki, W. Refinement of the Crystal Structure of α Domeykite, Structure Related to the A15 type. Z. Kristallogr. 1977, 145, 334–345. [Google Scholar] [CrossRef]
- Liebisch, W.; Schubert, K. The Structure of Copper-Arsenic Alloys. J. Less-Common Met. 1971, 23, 231–236. [Google Scholar] [CrossRef]
- Roush, R.A.; Mazzola, M.S.; Stoudt, D.C. Infrared photoconductivity via deep copper acceptors in silicon-doped, copper-compensated gallium arsenide photoconductive switches. IEEE Trans. Electron. Devices 1993, 40, 1081–1086. [Google Scholar] [CrossRef]
- Yvon, K.; Jeitschko, W.; Parthé, E. LAZY PULVERIX, a computer program, for calculating X-ray and neutron diffraction powder patterns. J. Appl. Crystallogr. 1977, 10, 73–74. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Bruker. APEX4; V2021.10-0; Bruker AXS Inc.: Madison, WI, USA, 2021. [Google Scholar]
- Bruker. SAINT; v8.30A; Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Bruker. XPREP; V2014/2; Bruker AXS Inc.: Madison, WI, USA, 2014. [Google Scholar]
- Bruker. SADABS; V2016/2; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Sheldrick, G.M. SHELXL-2019/1; Bruker AXS Inc.: Madison, WI, USA, 2019. [Google Scholar]
- Olofsson, O. The crystal structure of Cu3P. Acta Chem. Scand. 1972, 26, 2777–2787. [Google Scholar] [CrossRef]
- Xie, Y.; Su, H.L.; Qian, X.F.; Liu, X.M.; Qian, Y.T. A Mild One-Step Solvothermal Route to Metal Phosphides (Metal=Co, Ni, Cu). J. Solid State Chem. 2000, 149, 88–91. [Google Scholar] [CrossRef]
- Németh, P.; Garvie, L.A.J.; Aoki, T.; Dubrovinskaia, N.; Dubrovinsky, L.; Buseck, P.R. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 2014, 5, 5447. [Google Scholar] [CrossRef]
- Trueb, L.F. An Electron-Microscope Study of Shock-Synthesized Diamond. J. Appl. Phys. 1968, 39, 4707–4708. [Google Scholar] [CrossRef]
- Kurdyumov, A.V.; Britun, V.F.; Yarosh, V.V.; Danilenko, A.I.; Zelyavskii, V.B. The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond. J. Superhard. Mater. 2012, 34, 19–27. [Google Scholar] [CrossRef]
- Blank, V.; Kulnitskiy, B.; Nuzhdin, A. Lonsdaleite formation in process of reverse phase transition diamond–graphite. Diam. Relat. Mater. 2011, 20, 1315–1318. [Google Scholar] [CrossRef]
- Britun, V.F.; Kurdyumov, A.V.; Petrusha, I.A. Diffusionless Nucleation of Lonsdaleite and Diamond in Hexagonal Graphite under Static Compression. Powder Met. Met. Ceram. 2004, 43, 87–93. [Google Scholar] [CrossRef]
- El Mendili, Y.; Orberger, B.; Chateigner, D.; Bardeau, J.-F.; Gascoin, S.; Petit, S. Raman investigations and ab initio calculations of natural diamond-lonsdaleite originating from New Caledonia. Chem. Phys. 2022, 559, 111541. [Google Scholar] [CrossRef]
- Matar, S.F.; Solozhenko, V.L. Ultra-hard rhombohedral carbon by crystal chemistry and ab initio investigations. J. Solid State Chem. 2021, 302, 122354. [Google Scholar] [CrossRef]
- Shiell, T.B.; McCulloch, D.G.; Bradby, J.E.; Haberl, B.; Boehler, R.; McKenzie, D.R. Nanocrystalline hexagonal diamond formed from glassy carbon. Sci. Rep. 2016, 6, 37232. [Google Scholar] [CrossRef]
- Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D.O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L.B.; Schaumann, G.; Nagler, B.; et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 2016, 7, 10970. [Google Scholar] [CrossRef]
- Kulnitskiy, B.; Perezhogin, I.; Dubitskya, G.; Blanka, V. Polytypes and twins in the diamond-lonsdaleite system formed by high-pressure and high-temperature treatment of graphite. Acta Crystallogr. Sect. B 2013, 695, 474–479. [Google Scholar] [CrossRef]
- Murri, M.; Smith, R.L.; McColl, K.; Hart, M.; Alvaro, M.; Jones, A.P.; Németh, P.; Salzmann, C.G.; Corà, F.; Domeneghetti, M.C.; et al. Quantifying hexagonal stacking in diamond. Sci. Rep. 2019, 9, 10334. [Google Scholar] [CrossRef]
- Pauling, L.; Kamb, B. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy. Proc. Natl. Acad. Sci. USA 1986, 83, 3569–3571. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7–11. [Google Scholar] [CrossRef]
- Müller, P. Crystal Structure Refinement: A Crystallographers Guide to SHELXL; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Wolff, A.; Doert, T.; Hunger, J.; Kaiser, M.; Pallmann, J.; Reinhold, R.; Yogendra, S.; Giebeler, L.; Sichelschmidt, J.; Schnelle, W.; et al. Low-Temperature Tailoring of Copper-Deficient Cu3–xP—Electric Properties, Phase Transitions, and Performance in Lithium-Ion Batteries. Chem. Mater. 2018, 30, 7111–7123. [Google Scholar] [CrossRef]
- Pallecchi, I.; Caglieris, F.; Putti, M. Thermoelectric properties of iron-based superconductors and parent compounds. Supercond. Sci. Technol. 2016, 29, 073002. [Google Scholar] [CrossRef]
- Li, G.; Tu, J.; Wang, M.; Jiao, S. Cu3P as a novel cathode material for rechargeable aluminum-ion batteries. J. Mater. Chem. A 2019, 7, 8368–8375. [Google Scholar] [CrossRef]
Compound | Cu2.881(7)As |
---|---|
Temperature [K] | 293(2) K |
Formula weight [g/mol] | 265.54 |
Structural prototype | Cu3P |
Pearson symbol | hP24-0.71 |
Crystal system | Hexagonal |
Space group | P63cm (No. 185) |
a [Å] | 7.1407(3) |
c [Å] | 7.3057(6) |
Unit cell volume [Å3] | 322.61(4) |
Unit formula per cell, Z | 6 |
Calculated density, ρ [g/cm3] | 7.97 |
Absorption coefficient, µ [mm−1] | 43.06 |
F(000) | 700 |
Crystal description | Irregular form, metallic luster |
Theta range [°] | 3.3° ≤ ϑ ≤ 45.2° |
Index ranges h, k, l | −14 ≤ h ≤ 14 |
–14 ≤ k ≤ 14 | |
–14 ≤ l ≤ 14 | |
Reflections collected | 18668 |
Absorption correction | Multiscan |
Refinement method | Full-matrix least-squares on F2 |
Data/parameter | 991/26 |
Absolute structure parameter | 0.11(12) |
Goodness of fit on F2 | 1.08 |
Final R indices [I > 2σ(I)] | R1 = 0.0349, wR2 = 0.0927 |
R indices (all data) | R1 = 0.0460, wR2 = 0.0979 |
Rint/Rsym | 0.0748/0.0255 |
Largest diff. peak and hole [e–/Å3] | +1.82, –2.27 |
Atom | Site | Atomic Coordinates | Occ. | Ueq [Å2] | ||
---|---|---|---|---|---|---|
x/a | y/b | z/c | ||||
As | 6c | 0.33416(10) | 0 | 0.0823(4) | 1 | 0.01172(13) |
Cu1 | 2a | 0 | 0 | 0.00000 * | 1 | 0.0212(3) |
Cu2 | 6c | 0.7121(2) | 0 | 0.2504(4) | 1 | 0.0239(2) |
Cu3 | 4b | 1/3 | 2/3 | 0.1550(5) | 1 | 0.0373(5) |
Cu4 | 6c | 0.36811(19) | 0 | 0.4129(4) | 0.881(7) | 0.0271(4) |
Atom | Site | U11 | U22 | U33 | U23 | U13 | U12 |
---|---|---|---|---|---|---|---|
As | 6c | 0.01100(17) | 0.0118(2) | 0.0124(2) | 0 | 0.00053(14) | 0.00590(11) |
Cu1 | 2a | 0.0129(3) | 0.0129(3) | 0.0367(8) | 0 | 0 | 0.00646(15) |
Cu3 | 6c | 0.0331(4) | 0.0156(4) | 0.0164(4) | 0 | 0.0034(5) | 0.00779(19) |
Cu2 | 4b | 0.0149(3) | 0.0149(3) | 0.0828(16) | 0 | 0 | 0.00744(16) |
Cu4 | 6c | 0.0232(4) | 0.0535(10) | 0.0142(5) | 0 | −0.0032(4) | 0.0268(5) |
Central Atom | Ligands | d [Å] | dobs/ΣrM | Polyhedron |
---|---|---|---|---|
As CN = 11 | 1 Cu1 | 2.4605(11) | 0.922 | Pseudo Frank–Kasper polyhedra As@Cu11 |
2 Cu2 | 2.4361(8) | 0.913 | ||
1 Cu3 | 2.4469(18) | 0.918 | ||
2 Cu3 | 2.5541(12) | 0.957 | ||
1 Cu3 | 2.9652(16) | 1.111 | ||
1 Cu4 | 2.4277(18) | 0.910 | ||
1 Cu4 | 2.4601(16) | 0.922 | ||
2 Cu4 | 2.8037(10) | 1.051 | ||
Cu1 CN = 12 | 3 As | 2.4605(10) | 0.922 | Icosahedron Cu@Cu9As3 |
3 Cu3 | 2.7483(22) | 1.075 | ||
3 Cu3 | 2.7516(21) | 1.076 | ||
3 Cu4 | 2.7044(12) | 1.058 | ||
Cu2 CN = 12 | 3 As | 2.4361(9) | 0.913 | Icosahedron Cu@Cu9As3 |
3 Cu3 | 2.6511(12) | 1.037 | ||
3 Cu4 | 2.8751(21) | 1.125 | ||
3 Cu4 | 2.9470(21) | 1.153 | ||
Cu3 CN = 12 | 1 As | 2.4469(18) | 0.918 | Icosahedron Cu@Cu8As4 |
2 As | 2.5541(10) | 0.957 | ||
1 As | 2.9652(16) | 1.111 | ||
1 Cu1 | 2.7483(23) | 1.075 | ||
1 Cu1 | 2.7516(23) | 1.076 | ||
2 Cu2 | 2.6511(12) | 1.037 | ||
2 Cu4 | 2.6722(8) | 1.046 | ||
1 Cu4 | 2.5313(15) | 0.990 | ||
1 Cu4 | 2.7284(19) | 1.068 | ||
Cu4 CN = 13 | 1 As | 2.4277(18) | 0.910 | Pseudo Frank–Kasper polyhedra Cu@Cu9As4 |
1 As | 2.4601(16) | 0.922 | ||
2 As | 2.8037(11) | 1.051 | ||
1 Cu1 | 2.7044(15) | 1.058 | ||
2 Cu2 | 2.8751(20) | 1.125 | ||
2 Cu2 | 2.9740(21) | 1.153 | ||
1 Cu3 | 2.5313(15) | 0.990 | ||
2 Cu3 | 2.6722(13) | 1.046 | ||
1 Cu3 | 2.7284(19) | 1.068 |
61/65 | 62/31 | 63 | -c- | --c | |
---|---|---|---|---|---|
Total | 218 | 173 | 126 | 5313 | 2881 |
N (I > 3) | 101 | 89 | 14 | 631 | 1914 |
〈I〉 | 6.0 | 7.5 | 0.2 | 0.4 | 16.6 |
〈I/σ〉 | 5.5 | 6.5 | 1.1 | 1.3 | 6.6 |
Compound | Cu2.852(5)As |
---|---|
Temperature [K] | 195(2) |
Formula weight [g/mol] | 256.12 |
Structural prototype | Own |
Pearson symbol | hP72 |
Crystal system | Trigonal |
Space group | P–3c1 (No. 165) |
a [Å] | 7.110(2) |
c [Å] | 21.879(4) |
Unit cell volume [Å3] | 957.8(6) |
Unit formula per cell, Z | 18 |
Calculated density, ρ [g/cm3] | 7.99 |
Absorption coefficient, µ [mm−1] | 43.21 |
F(000) | 2083 |
Crystal description | Irregular form, metallic luster |
Theta range [°] | 2.8° ≤ ϑ ≤ 36.4° |
Index ranges h, k, l | −11 ≤ h ≤ 11 |
–11 ≤ k ≤ 11 | |
–36 ≤ l ≤ 36 | |
Reflections collected | 57491 |
Absorption correction | Multiscan |
Refinement method | Full-matrix least-squares on F2 |
Data/parameter | 1568/58 |
Twin law | −1 0 0 0 −1 0 0 0 −1 |
BASF | 0.60 |
Goodness of fit on F2 | 1.17 |
Final R indices [I > 2σ(I)] | R1 = 0.0481, wR2 = 0.1103 |
R indices (all data) | R1 = 0.0510, wR2 = 0.1116 |
Rint/Rsym | 0.0743/0.0210 |
Largest diff. peak and hole [e–/Å3] | +4.03, –4.11 |
Atom | Site | Atomic Coordinates | Occ. | Ueq [Å2] | ||
---|---|---|---|---|---|---|
x/a | y/b | z/c | ||||
As1 | 12g | 0.32922(14) | 0.32932(15) | 0.07954(3) | 1 | 0.01017(13) |
As2 | 6f | 0.34120(17) | 0 | 1/4 | 1 | 0.00890(16) |
Cu1 | 4d | 1/3 | 2/3 | 0.05029(8) | 1 | 0.0138(3) |
Cu2 | 4d | 1/3 | 2/3 | 0.39253(9) | 1 | 0.0147(3) |
Cu3 | 2a | 0 | 0 | 1/4 | 1 | 0.0196(5) |
Cu4 | 4c | 0 | 0 | 0.11530(10) | 1 | 0.0171(3) |
Cu5 | 4d | 1/3 | 2/3 | 0.22502(12) | 1 | 0.0232(4) |
Cu6 | 12g | 0.06180(2) | 0.39440(2) | 0.13869(5) | 1 | 0.0218(2) |
Cu7 | 12g | 0.34900(2) | 0.30257(16) | 0.19163(5) | 1 | 0.01458(19) |
Cu8 | 12g | 0.34710(2) | 0.03300(2) | 0.02891(5) | 0.778(5) | 0.0135(3) |
Atom | Site | U11 | U22 | U33 | U23 | U13 | U12 |
---|---|---|---|---|---|---|---|
As1 | 12g | 0.0087(3) | 0.0092(3) | 0.0126(3) | −0.0027(2) | 0.0003(2) | 0.0045(3) |
As2 | 6f | 0.0110(4) | 0.0083(3) | 0.0083(3) | −0.00024(18) | −0.0005(4) | 0.0055(2) |
Cu1 | 4d | 0.0112(4) | 0.0112(4) | 0.0189(7) | 0.000 | 0.000 | 0.0056(2) |
Cu2 | 4d | 0.0114(4) | 0.0114(4) | 0.0213(7) | 0.000 | 0.000 | 0.0057(2) |
Cu3 | 2a | 0.0071(5) | 0.0071(5) | 0.0446(15) | 0.000 | 0.000 | 0.0036(3) |
Cu4 | 4c | 0.0122(4) | 0.0122(4) | 0.0269(8) | 0.000 | 0.000 | 0.0061(2) |
Cu5 | 4d | 0.0102(4) | 0.0102(4) | 0.0494(12) | 0.000 | 0.000 | 0.0051(2) |
Cu6 | 12g | 0.0358(6) | 0.0331(6) | 0.0145(4) | 0.0085(4) | 0.0106(4) | 0.0307(5) |
Cu7 | 12g | 0.0175(4) | 0.0100(4) | 0.0150(3) | 0.0044(3) | 0.0003(4) | 0.0059(4) |
Cu8 | 12g | 0.0116(6) | 0.0247(7) | 0.0082(4) | 0.0035(5) | 0.0027(4) | 0.0121(6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mödlinger, M.; Provino, A.; Solokha, P.; Caglieris, F.; Ceccardi, M.; Macciò, D.; Pani, M.; Bernini, C.; Cavallo, D.; Ciccioli, A.; et al. Cu3As: Uncommon Crystallographic Features, Low-Temperature Phase Transitions, Thermodynamic and Physical Properties. Materials 2023, 16, 2501. https://doi.org/10.3390/ma16062501
Mödlinger M, Provino A, Solokha P, Caglieris F, Ceccardi M, Macciò D, Pani M, Bernini C, Cavallo D, Ciccioli A, et al. Cu3As: Uncommon Crystallographic Features, Low-Temperature Phase Transitions, Thermodynamic and Physical Properties. Materials. 2023; 16(6):2501. https://doi.org/10.3390/ma16062501
Chicago/Turabian StyleMödlinger, Marianne, Alessia Provino, Pavlo Solokha, Federico Caglieris, Michele Ceccardi, Daniele Macciò, Marcella Pani, Cristina Bernini, Dario Cavallo, Andrea Ciccioli, and et al. 2023. "Cu3As: Uncommon Crystallographic Features, Low-Temperature Phase Transitions, Thermodynamic and Physical Properties" Materials 16, no. 6: 2501. https://doi.org/10.3390/ma16062501
APA StyleMödlinger, M., Provino, A., Solokha, P., Caglieris, F., Ceccardi, M., Macciò, D., Pani, M., Bernini, C., Cavallo, D., Ciccioli, A., & Manfrinetti, P. (2023). Cu3As: Uncommon Crystallographic Features, Low-Temperature Phase Transitions, Thermodynamic and Physical Properties. Materials, 16(6), 2501. https://doi.org/10.3390/ma16062501