Long Non-Coding RNAs as Strategic Molecules to Augment the Radiation Therapy in Esophageal Squamous Cell Carcinoma
Abstract
1. Introduction
2. Literature Search and Selection Methodology
3. Detailed Regulation of Radioresistance in ESCC through lncRNAs
3.1. Dynamin 3 Opposite Strands
3.2. Long Intergenic Non-Protein Coding RNA 473
3.3. Non-Coding RNA Activated by DNA Damage
3.4. POU6F2 Antisense RNA 2
4. Detailed Regulation of Radiosensitivity in ESCC through lncRNA4
4.1. Family with Sequence Similarity 201 Member A
4.2. Metastasis-Associated Lung Adenocarcinoma Transcript 1
4.3. Tumor Suppressor Candidate 7 or Limbic System Associated Membrane Protein
4.4. Actin Filament Associated Protein 1
4.5. Taurine-Upregulated Gene 1
5. Conclusion and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AFAP1-AS1 | Actin Filament Associated Protein 1 |
ALDH1 | Aldehyde dehydrogenase 1 |
AP-1 | Activator protein 1 |
ATM | Ataxia telangiectasia mutated |
BrdU | Bromodeoxyuridine/5-bromo-2’-deoxyuridine |
CAFs | Cancer-associated fibroblasts |
CCNB1 | Cyclin B1 |
Cdc25A | Cell division cycle 25 A |
ChIP | Chromatin immunoprecipitation |
Cks1 | Cyclin-dependent kinase subunit 1 |
c-MET RTK | c-MET receptor tyrosine kinase |
CTGF | Connective tissue growth factor |
dCRT | Definitive chemoradiotherapy |
DDR | DNA damage response |
DNA-PKcs | DNA protein kinase |
DNM3OS | Dynamin 3 Opposite Strand |
DOAJ | Directory of open access journals |
EC | Esophageal cancer |
ESCC | Esophageal squamous cell carcinoma |
FAM201A | Family with sequence similarity 201 member A |
FOXO1 | Forkhead box protein O1 |
HNSCC | Head and neck squamous cell carcinoma |
LD | Linear dichroism |
LINC00473 | Long Intergenic Non-Protein Coding RNA 473 |
lncRNAs | Long non-coding RNAs |
MALAT1 | Metastasis-Associated Lung Adenocarcinoma Transcript 1 |
MDPI | Multidisciplinary Digital Publishing Institute |
miRNAs | MicroRNAs |
MRE1 | Meiotic recombination 11 homolog 1 |
mTOR | Mammalian target of rapamycin |
NBS1 | Nijmegen breakage syndrome 1 |
NHEJ | Non-homologous end joining |
NORAD | Non-coding RNA activated by DNA damage |
p-Akt | Phosphorylated-Akt |
PARP | Protein and cleaved poly ADP ribose polymerase |
pChk2 | Phosphorylated checkpoint kinase 2 |
PDGFR α/β | Platelet-derived growth factor α/β |
PDGFβ | PDGF β-polypeptide |
PDGFβR | Platelet-derived growth factor receptor βpolypeptide |
PFS | Progression-free survival |
POU6F2—AS2 | POU6F2 Antisense RNA 2 |
qRT-PCR | Quantitative real-time polymerase chain reaction |
SNPs | Single nucleotide polymorphisms |
SPIN1 | Spindlin 1 |
TNM | Tumor node metastasis |
TUG1 | Taurine-Upregulated Gene 1 |
TUSC7 | Tumor Suppressor Candidate 7 |
YAP | Yes-associated protein |
γH2AX | yH2A histone family member X |
References
- Liang, H.; Fan, J.H.; Qiao, Y.L. Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China. Cancer Biol. Med. 2017, 14, 33–41. [Google Scholar]
- Ohashi, S.; Miyamoto, S.; Kikuchi, O.; Goto, T.; Amanuma, Y.; Muto, M. Recent Advances from Basic and Clinical Studies of Esophageal Squamous Cell Carcinoma. Gastroenterology 2015, 149, 1700–1715. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, H.; Qin, Q.; Yang, Y.; Yang, Y.; Cheng, H.; Sun, X. Genetic variants and risk of esophageal squamous cell carcinoma: A GWAS-based pathway analysis. Gene 2015, 556, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Xiao, Y.; Ma, J.; Cao, D.; Zhou, Y.; Wang, H.; Liao, Q.; Wang, W. Long non-coding RNAs in esophageal cancer: Molecular mechanisms, functions, and potential applications. J. Hematol. Oncol. 2018, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Song, H.; Chen, G.; Yang, X.; Liu, J.; Ge, Y.; Lu, J.; Qin, Q.; Zhang, C.; Xu, L.; et al. eEF2K promotes progression and radioresistance of esophageal squamous cell carcinoma. Radiother. Oncol. 2017, 124, 439–447. [Google Scholar] [CrossRef]
- Podralska, M.; Ciesielska, S.; Kluiver, J.; van den Berg, A.; Dzikiewicz-Krawczyk, A.; Slezak-Prochazka, I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers 2020, 12, 1662. [Google Scholar] [CrossRef] [PubMed]
- Hickman, A.W.; Jaramillo, R.J.; Lechner, J.F.; Johnson, N.F. Alpha-particle-induced p53 protein expression in a rat lung epithelial cell strain. Cancer Res. 1994, 54, 5797–5800. [Google Scholar]
- Chi, H.C.; Tsai, C.Y.; Tsai, M.M.; Yeh, C.T.; Lin, K.H. Roles of Long Noncoding RNAs in Recurrence and Metastasis of Radiotherapy-Resistant Cancer Stem Cells. Int. J. Mol. Sci. 2017, 18, 1903. [Google Scholar] [CrossRef]
- Malhotra, A.; Jain, M.; Prakash, H.; Vasquez, K.M.; Jain, A. The regulatory roles of long non-coding RNAs in the development of chemoresistance in breast cancer. Oncotarget 2017, 8, 110671–110684. [Google Scholar] [CrossRef]
- Malhotra, A.; Sharma, U.; Puhan, S.; Bandari, N.C.; Kharb, A.; Arifa, P.P.; Thakur, L.; Prakash, H.; Vasquez, K.M.; Jain, A. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie 2019, 156, 148–157. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Q.; Liu, R.; Chen, Z.; Zhang, X.; Zhou, P.; Wang, Z. LncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA. Nucleic Acids Res. 2018, 46, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hua, Y.; Jiang, Z.; Yue, J.; Shi, M.; Zhen, X.; Zhang, X.; Yang, L.; Zhou, R.; Wu, S. Cancer-associated Fibroblast-promoted LncRNA DNM3OS Confers Radioresistance by Regulating DNA Damage Response in Esophageal Squamous Cell Carcinoma. Clin. Cancer Res. 2019, 25, 1989–2000. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, P.; Chen, Y.; Chen, Z.; Shen, M.; Liu, X.; Li, X.; Li, A.; Lin, Y.; Yang, R.; et al. Long Noncoding RNA FAM201A Mediates the Radiosensitivity of Esophageal Squamous Cell Cancer by Regulating ATM and mTOR Expression via miR-101. Front. Genet. 2018, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, Y.; Wang, H.; Pan, T.; Zhang, Y.; Li, C. LINC00473/miR-374a-5p regulates esophageal squamous cell carcinoma via targeting SPIN1 to weaken the effect of radiotherapy. J. Cell. Biochem. 2019, 120, 14562–14572. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Qiao, H.Y.; Xu, J.; Wang, W.Q.; Wu, Y.L.; Wu, X. LINC00473 contributes to the radioresistance of esophageal squamous cell carcinoma by regulating microRNA4975p and cell division cycle 25A. Int. J. Mol. Med. 2020, 46, 571–582. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Pan, S.; Yang, T.; Sun, X.; Wang, Y.; Shi, X.; Zhao, X.; Guo, J.; Zhang, X. LINC00657 played oncogenic roles in esophageal squamous cell carcinoma by targeting miR-615-3p and JunB. Biomed. Pharmacother. 2018, 108, 316–324. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Zhu, H.; Qin, Q.; Yang, X.; Sun, X. Long noncoding RNA POU6F2-AS2 is associated with oesophageal squamous cell carcinoma. J. Biochem. 2016, 160, 195–204. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Tu, B.; Bu, Y.; Liu, A.; Kong, J. Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression. J. Oral Pathol. Med. 2017, 46, 583–590. [Google Scholar] [CrossRef]
- Yao, Q.; Yang, J.; Liu, T.; Zhang, J.; Zheng, Y. Long noncoding RNA MALAT1 promotes the stemness of esophageal squamous cell carcinoma by enhancing YAP transcriptional activity. FEBS Open Bio 2019, 9, 1392–1402. [Google Scholar] [CrossRef]
- Tong, Y.S.; Zhou, X.L.; Wang, X.W.; Wu, Q.Q.; Yang, T.X.; Lv, J.; Yang, J.S.; Zhu, B.; Cao, X.F. Association of decreased expression of long non-coding RNA LOC285194 with chemoradiotherapy resistance and poor prognosis in esophageal squamous cell carcinoma. J. Transl. Med. 2014, 12, 233. [Google Scholar] [CrossRef]
- Zhou, X.L.; Wang, W.W.; Zhu, W.G.; Yu, C.H.; Tao, G.Z.; Wu, Q.Q.; Song, Y.Q.; Pan, P.; Tong, Y.S. High expression of long non-coding RNA AFAP1-AS1 predicts chemoradioresistance and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Mol. Carcinog. 2016, 55, 2095–2105. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, Z.; Ye, T.; Shao, F.; Li, J.; Sun, N.; He, J. lncTUG1/miR-144-3p affect the radiosensitivity of esophageal squamous cell carcinoma by competitively regulating c-MET. J. Exp. Clin. Cancer Res. 2020, 39, 7. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef]
- Watanabe, T.; Sato, T.; Amano, T.; Kawamura, Y.; Kawamura, N.; Kawaguchi, H.; Yamashita, N.; Kurihara, H.; Nakaoka, T. DNM3OS, a non-coding RNA, is required for normal growth and skeletal development in mice. Dev. Dyn. 2008, 237, 3738–3748. [Google Scholar] [CrossRef]
- Wang, S.; Ni, B.; Zhang, Z.; Wang, C.; Wo, L.; Zhou, C.; Zhao, Q.; Zhao, E. Long non-coding RNA DNM3OS promotes tumor progression and EMT in gastric cancer by associating with Snail. Biochem. Biophys. Res. Commun. 2019, 511, 57–62. [Google Scholar] [CrossRef]
- Tao, L.; Huang, G.; Song, H.; Chen, Y.; Chen, L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol. Lett. 2017, 14, 2611–2620. [Google Scholar] [CrossRef]
- Shi, C.; Yang, Y.; Yu, J.; Meng, F.; Zhang, T.; Gao, Y. The long noncoding RNA LINC00473, a target of microRNA 34a, promotes tumorigenesis by inhibiting ILF2 degradation in cervical cancer. Am. J. Cancer Res. 2017, 7, 2157–2168. [Google Scholar]
- Han, P.B.; Ji, X.J.; Zhang, M.; Gao, L.Y. Upregulation of lncRNA LINC00473 promotes radioresistance of HNSCC cells through activating Wnt/beta-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7305–7313. [Google Scholar]
- Wang, X.; Weaver, D.T. The ups and downs of DNA repair biomarkers for PARP inhibitor therapies. Am. J. Cancer Res. 2011, 1, 301–327. [Google Scholar]
- Gao, Y.; Yue, W.; Zhang, P.; Li, L.; Xie, X.; Yuan, H.; Chen, L.; Liu, D.; Yan, F.; Pei, X. Spindlin1, a novel nuclear protein with a role in the transformation of NIH3T3 cells. Biochem. Biophys. Res. Commun. 2005, 335, 343–350. [Google Scholar] [CrossRef]
- Bothig, B.; Schulze, P.; Schreier, E.; Diedrich, S.; Michel, S. Atypical human rotaviruses in the G.D.R. Acta Virol. 1989, 33, 320–326. [Google Scholar] [PubMed]
- Lee, S.; Kopp, F.; Chang, T.C.; Sataluri, A.; Chen, B.; Sivakumar, S.; Yu, H.; Xie, Y.; Mendell, J.T. Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell 2016, 164, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Huo, X.; Sun, R.; Liu, Z.; Huang, M.; Yang, S. lncRNA Gm15290 promotes cell proliferation and invasion in lung cancer through directly interacting with and suppressing the tumor suppressor miR-615-5p. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Deng, L.; Tang, D.; Ying, G.; Yao, X.; Liu, F.; Liang, G. miR-615-5p prevents proliferation and migration through negatively regulating serine hydromethyltransferase 2 (SHMT2) in hepatocellular carcinoma. Tumour Biol. 2016, 37, 6813–6821. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, T.; Wang, C.; Jin, X.; Jia, C.; Yu, S.; Chen, J. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2. PLoS ONE 2015, 10, e0119783. [Google Scholar]
- Yu, D.; Mathews, C.A.; Scharf, J.M.; Neale, B.M.; Davis, L.K.; Gamazon, E.R.; Derks, E.M.; Evans, P.; Edlund, C.K.; Crane, J.; et al. Cross-disorder genome-wide analyses suggest a complex genetic relationship between Tourette’s syndrome and OCD. Am J. Psychiatry 2015, 172, 82–93. [Google Scholar] [CrossRef]
- Huang, G.; Zhao, G.; Xia, J.; Wei, Y.; Chen, F.; Chen, J.; Shi, J. FGF2 and FAM201A affect the development of osteonecrosis of the femoral head after femoral neck fracture. Gene 2018, 652, 39–47. [Google Scholar] [CrossRef]
- Matsumura, K.; Kawasaki, Y.; Miyamoto, M.; Kamoshida, Y.; Nakamura, J.; Negishi, L.; Suda, S.; Akiyama, T. The novel G-quadruplex-containing long non-coding RNA GSEC antagonizes DHX36 and modulates colon cancer cell migration. Oncogene 2017, 36, 1191–1199. [Google Scholar] [CrossRef]
- Yan, D.; Ng, W.L.; Zhang, X.; Wang, P.; Zhang, Z.; Mo, Y.Y.; Mao, H.; Hao, C.; Olson, J.J.; Curran, W.J.; et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS ONE 2010, 5, e11397. [Google Scholar] [CrossRef]
- Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 2010, 39, 925–938. [Google Scholar] [CrossRef]
- Xiao, Y.; Pan, J.; Geng, Q.; Wang, G. LncRNA MALAT1 increases the stemness of gastric cancer cells via enhancing SOX2 mRNA stability. FEBS Open Bio 2019, 9, 1212–1222. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; He, Y.; Lin, L.; Qi, Z.; Ma, L.; Li, L.; Su, Y. Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145. Tumour Biol. 2016, 37, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Meng, L.; Liu, P.; Ji, R.; Su, X.; Xin, Y.; Jiang, X. YAP/TAZ: A promising target for squamous cell carcinoma treatment. Cancer Manag. Res. 2019, 11, 6245–6252. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, A.; Shen, J.; Zhang, X.; Hou, M.; Li, J.; Chen, J.; Zou, H.; Zhang, Y.; Deng, Q.; et al. Long non-coding RNA LOC285194 functions as a tumor suppressor by targeting p53 in non-small cell lung cancer. Oncol. Rep. 2019, 41, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yang, D.; Ye, Y.; Liu, P.; Chen, Z.; Lei, T.; Pu, J.; Liu, L.; Wang, Z. Long noncoding RNA actin filament-associated protein 1 antisense RNA 1 promotes malignant phenotype through binding with lysine-specific demethylase 1 and repressing HMG box-containing protein 1 in non-small-cell lung cancer. Cancer Sci. 2019, 110, 2211–2225. [Google Scholar] [CrossRef]
- Young, T.L.; Matsuda, T.; Cepko, C.L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol. 2005, 15, 501–512. [Google Scholar] [CrossRef]
- Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol. 2011, 3 (Suppl. 1), S7–S19. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; De Geyter, C. A natural antisense transcript, BOKAS, regulates the pro-apoptotic activity of human Bok. Int. J. Oncol. 2009, 34, 1135–1138. [Google Scholar] [CrossRef]
- Amodio, N.; Raimondi, L.; Juli, G.; Stamato, M.A.; Caracciolo, D.; Tagliaferri, P.; Tassone, P. MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J. Hematol. Oncol. 2018, 11, 63. [Google Scholar] [CrossRef]
- Khvorova, A.; Watts, J.K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 2017, 35, 238–248. [Google Scholar] [CrossRef]
lncRNA | Genomic Location | Mean Fold Change in Expression Compared to Controls | Radiation Type (Dose) | Property | Validation Methods | Biological Significance | Genes/Proteins/Pathways Affected | Ref. |
---|---|---|---|---|---|---|---|---|
DNM3OS | 1q24.3 | KYSE-30 ~39.4-folds KYSE-50 ~35.8-folds KYSE-180 ~28.5-folds KYSE-140 ~35-folds KYSE-450 ~7-folds Tissues ~6.3-folds KYSE-150R~4.3-folds | X-ray radiation (12 Gy, 12 days) | Oncogenic | qRT-PCR, Western blot analyses, ChIP assay | Increased levels of growth factors, reduced tumor suppressor levels, reduce DNA damage response leading to sustained proliferative signals, reduced apoptotic rate and enhanced radioresistance | γH2AX ↓, cPARP ↓, p-ATM ↑, Rad50 ↑, p-Chk2 ↑, Ku80 ↑, MRE1 ↑, NBS1 ↑, DNA-PKcs ↑, and p53 ↑, PDGFα/β signaling ↑ | [12] |
LINC00473 | 6q27 | TE-1 ~6.2-folds EC9706 ~6.8-folds ECA109 ~3.6-folds KYSE-450 ~1.6-folds Tissues- ~2.6-folds | X-ray radiation (4 Gy) | Oncogenic | qRT-PCR, Western blot analyses | Reduced DNA damage response, reduced tumor suppressor levels, stimulated cell cycle progression leading to enhanced proliferation, reduced apoptotic rates, and enhanced radioresistance | mir-374a-5p ↓ PARP ↑ SPIN1 ↑ miR-497-5p ↓ CdC25A ↑ | [14,15] |
LINC00657 | 20q11.23 | KY-SE ~1.4-folds Eca-109 ~1.5-folds TE-1 ~1.4-folds Tissues ~1.3-folds | X-ray radiation (0, 4, 8 Gy) | Oncogenic | qRT-PCR, Western blot analyses, BrdU assay | Reduced tumor suppressor levels, causing increased cell proliferation, metastasis, invasion, and enhanced radioresistance | miR-615-3p ↓ JunB ↑ TGFβ ↑ TGF signaling ↑ | [16] |
POU6F2-AS2 | 7p14.1 | KYSE-140 ~5-folds KYSE-510 ~6.1-folds KYSE-30 ~2.0-folds KYSE-70 ~1.0-fold | Ionizing radiation (0, 4, 6 Gy) | Oncogenic | qRT-PCR, microarray analyses, immunoblot, RIP assay, RNA pulldown assay, ChIP-seq assay | Reduced DNA damage response, reduced tumor suppressor levels, stimulated cell cycle progression leading to enhanced proliferation and enhanced radioresistance | Ybx1 ↑ | [17] |
FAM201A | 9p13.1 | NA | X-ray radiation (0, 2, 4, 6, 8 and 10 Gy) | Oncogenic | qRT-PCR, microarray analyses, Western blot analyses | Enhanced DNA damage response, reduced tumor suppressor levels leading to poorer radiosensitivity | miR-101 ↓ mTOR ↑ ATM ↑ | [13] |
MALAT1 | 11q13.1 | Eca109 ~3.1-folds TE-1 ~3.4-folds | γ-radiation (5 Gy, 2.4 Gy/min) X-ray radiation (3.2 Gy/min) | Oncogenic | qRT-PCR, Western blot analyses, RIP assay | Enhanced invasion and metastasis, reduced radiosensitivity | Cks1 ↑, YAP ↑ | [18,19] |
LOC285194 | 3q13.31 | KYSE-30 ~2.0-folds KYSE-510 ~1.7-folds KYSE-109 ~2-folds KYSE-70 ~1.1-folds KYSE-150 ~1.3-folds Tissues ~1.1-folds | X-ray radiation(40 Gy, 20 fractions of 2 Gy, 5 fractions/week for 4 weeks) | Oncogenic | qRT-PCR | Enhanced cell proliferation, enhanced apoptosis and reduced radiosensitivity | NA | [20] |
AFAP1-AS1 | 14p16.1 | KYSE-30 ~1.0-fold KYSE-70 ~15.0-folds KYSE-150 ~3.0-folds KYSE-450 ~5.0-folds KYSE-510 ~9.0-folds TE-10 ~3.0-folds Tissues ~0.8-folds | X-ray radiation(60–70 Gy, 1.8–2 Gy/day for 5 days/week) | Oncogenic | qRT-PCR | NA | NA | [21] |
LncTUG1 | 22q12.2 | EC9706 ~3.0-folds KYSE-30~2.9-folds KYSE-140 ~2.8-folds TE-13~2.8-folds | X-ray radiation (2 Gy) | Oncogenic | qRT-PCR, Western blot, RIP assay | Enhanced cell proliferation, invasion and reduced radiosensitivity | miR-144-3p ↓, MET ↑, p-Akt ↑ | [22] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, U.; Barwal, T.S.; Acharya, V.; Singh, K.; Rana, M.K.; Singh, S.K.; Prakash, H.; Bishayee, A.; Jain, A. Long Non-Coding RNAs as Strategic Molecules to Augment the Radiation Therapy in Esophageal Squamous Cell Carcinoma. Int. J. Mol. Sci. 2020, 21, 6787. https://doi.org/10.3390/ijms21186787
Sharma U, Barwal TS, Acharya V, Singh K, Rana MK, Singh SK, Prakash H, Bishayee A, Jain A. Long Non-Coding RNAs as Strategic Molecules to Augment the Radiation Therapy in Esophageal Squamous Cell Carcinoma. International Journal of Molecular Sciences. 2020; 21(18):6787. https://doi.org/10.3390/ijms21186787
Chicago/Turabian StyleSharma, Uttam, Tushar Singh Barwal, Varnali Acharya, Karuna Singh, Manjit Kaur Rana, Satyendra Kumar Singh, Hridayesh Prakash, Anupam Bishayee, and Aklank Jain. 2020. "Long Non-Coding RNAs as Strategic Molecules to Augment the Radiation Therapy in Esophageal Squamous Cell Carcinoma" International Journal of Molecular Sciences 21, no. 18: 6787. https://doi.org/10.3390/ijms21186787
APA StyleSharma, U., Barwal, T. S., Acharya, V., Singh, K., Rana, M. K., Singh, S. K., Prakash, H., Bishayee, A., & Jain, A. (2020). Long Non-Coding RNAs as Strategic Molecules to Augment the Radiation Therapy in Esophageal Squamous Cell Carcinoma. International Journal of Molecular Sciences, 21(18), 6787. https://doi.org/10.3390/ijms21186787