Effect of Age on the Touchscreen Manipulation Ability of Community-Dwelling Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments
2.2. Procedure
2.3. Statistical Analysis
3. Results
3.1. Participants
3.2. TATOO Performance Results
3.3. Usability Data of the TATOO Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scherder, E.; Dekker, W.; Eggermont, L. Higher-Level Hand Motor Function in Aging and (Preclinical) Dementia: Its Relationship with (Instrumental) Activities of Daily Life—A Mini-Review. Gerontology 2008, 54, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, E.; Patish, H.; Coleman, R. The Aging Hand. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2003, 58, M146–M152. [Google Scholar] [CrossRef] [Green Version]
- Rand, D.; Eng, J.J. Arm-hand use in healthy older adults. Am. J. Occup. Ther. 2010, 64, 877–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stucki, G.; Cieza, A.; Melvin, J. The international classification of functioning, disability and health: A unifying model for the conceptual description of the rehabilitation strategy. J. Rehabil. Med. 2007, 39, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.; Schultz, I.Z.; Sepehry, A.A.; Stewart, A.M. Assessment of Competence in Older Adults. In Handbook of Rehabilitation in Older Adults; Springer: Berlin/Heidelberg, Germany, 2018; pp. 433–459. [Google Scholar]
- Edemekong, P.F.; Bomgaars, D.L.; Sukumaran, S. Activities of Daily Living (ADLs); StatPearls Publishing: Treasure Island, FL, USA, 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470404/ (accessed on 1 June 2020).
- Nobilia, M.; Culicchia, G.; Tofani, M.; De Santis, R.; Savona, A.; Guarino, D.; Valente, D.; Galeoto, G. Italian Version of the Jebsen-Taylor Hand Function Test for the Assessment of Hand Disorders: A Cross-Sectional Study. Am. J. Occup. Ther. 2019, 73, 7303205080p1–7303205080p6. [Google Scholar] [CrossRef] [PubMed]
- Ziat, M.; Yao, H.-Y.; Schmitt, R.; Hayward, V. Frontpanel: Tangible user interface for touch-screens dedicated to elderly. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016. [Google Scholar]
- Gorce, P.; Nadine, V.; Motti, L. Interaction techniques for older adults using touchscreen devices: A literature review from 2000 to 2013. J. d’Interact. Pers. Système 2014, 3, 1–26. [Google Scholar]
- Lee, N.; Seaborn, K.; Hiyama, A.; Inami, M.; Hirose, M. Evaluating a smartphone-based social participation app for the elderly. In International Conference on Human Aspects of IT for the Aged Population; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Hawley-Hague, H.; Tacconi, C.; Mellone, S.; Martinez, E.; Ford, C.; Chiari, L.; Helbostad, J.; Todd, C. Smartphone Apps to Support Falls Rehabilitation Exercise: App Development and Usability and Acceptability Study. JMIR mHealthth uHealthth 2020, 8, e15460. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, P.; Rezvani, A.; Wiewiora, A. The impact of technology on older adults’ social isolation. Comput. Hum. Behav. 2016, 63, 594–603. [Google Scholar] [CrossRef]
- Lim, S.; Kang, S.M.; Shin, H.; Lee, H.J.; Yoon, J.W.; Yu, S.H.; Kim, S.-Y.; Yoo, S.Y.; Jung, H.S.; Park, K.S.; et al. Improved Glycemic Control Without Hypoglycemia in Elderly Diabetic Patients Using the Ubiquitous Healthcare Service, a New Medical Information System. Diabetes Care 2011, 34, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Luximon, Y.; Goonetilleke, R.; Karwowski, W. Older Adults and Digital Technology: A Study of User Perception and Usage Behavior. In Advances in Physical Ergonomics and Human Factors; Springer: Berlin/Heidelberg, Germany, 2016; Volume 489, pp. 155–163. [Google Scholar]
- Kravitz, N.; Levanon, Y.; Cukierman-Yaffe, T.; Nota, A.; Kizony, R.; Rand, D. Sensorimotor and Cognitive Abilities Associated With Touchscreen Tablet App Performance to Support Self-Management of Type 2 Diabetes. Am. J. Occup. Ther. 2021, 75, 7501205080p1–7501205080p9. [Google Scholar] [CrossRef] [PubMed]
- Cajamarca, G.; Herskovic, V.; Rossel, P.O. Enabling Older Adults’ Health Self-Management through Self-Report and Visualization—A Systematic Literature Review. Sensors 2020, 20, 4348. [Google Scholar] [CrossRef]
- Caprani, N.; O’Connor, N.E.; Gurrin, C. Touch screens for the older user. In Assistive Technologies; Auat Cheein, F.A., Ed.; InTech: London, UK, 2012; pp. 95–118. [Google Scholar]
- Murata, A.; Iwase, H. Usability of Touch-Panel Interfaces for Older Adults. Hum. Factors 2005, 47, 767–776. [Google Scholar] [CrossRef]
- Umemuro, H. Lowering elderly Japanese users’ resistance towards computers by using touchscreen technology. Univers. Access Inf. Soc. 2004, 3, 276–288. [Google Scholar] [CrossRef]
- Nurgalieva, L.; Laconich, J.J.J.; Baez, M.; Casati, F.; Marchese, M. A Systematic Literature Review of Research-Derived Touchscreen Design Guidelines for Older Adults. IEEE Access 2019, 7, 22035–22058. [Google Scholar] [CrossRef]
- Koo, B.M.; Vizer, L.M. Mobile Technology for Cognitive Assessment of Older Adults: A Scoping Review. Innov. Aging 2019, 3, igy038. [Google Scholar] [CrossRef] [PubMed]
- Givon Schaham, N.; Sternberg, S.; Rand, D. Executive functioning of older adults correlates with performance of touchscreen app-based puzzles. Games Health J. 2018, 7, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Stößel, C.; Wandke, H.; Blessing, L. An evaluation of finger-gesture interaction on mobile devices for elderly users. Prospektive Gestalt. Mensch Tech. Interakt. 2009, 8, 470–475. [Google Scholar]
- Danial-Saad, A.; Chiari, L. A multidisciplinary approach for developing an assessment tool for touch screen devices. Disabil. Rehabil. Assist. Technol. 2018, 13, 745–753. [Google Scholar] [CrossRef]
- Hertzum, M.; Hornbæk, K. How Age Affects Pointing With Mouse and Touchpad: A Comparison of Young, Adult, and Elderly Users. Int. J. Hum. Comput. Interact. 2010, 26, 703–734. [Google Scholar] [CrossRef]
- Danial-Saad, A.; Chiari, L.; Corzani, M.; Laufer, S.; Gabyzon, M. Evaluation of hand skills using touchscreen technology in the elderly population. Gait Posture 2019, 74, 11–12. [Google Scholar] [CrossRef]
- Brooke, J.S.; Aqadus, I.P.W.J.; Thomas, B.; Weerdmeester, I.B.; McClelland, L. (Eds.) Usability Evaluation in Industry. Taylor & Frances, Ltd.: Abingdon, UK, 1996. [Google Scholar]
- Lewis, J.R.; Sauro, J. The factor structure of the system usability scale. In International Conference on Human Centered Design; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Sharfina, Z.; Santoso, H.B. An Indonesian adaptation of the System Usability Scale (SUS). In Proceedings of the 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Malang, Indonesia, 15–16 October 2016. [Google Scholar]
- Baber, C.; Haniff, D.J.; Woolley, S.I. Contrasting paradigms for the development of wearable computers. IBM Syst. J. 1999, 38, 551–565. [Google Scholar] [CrossRef]
- Bangor, A.; Kortum, P.; Miller, J. Determining what individual SUS scores mean: Adding an adjective rating scale. J. Usability Stud. 2009, 4, 114–123. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Blažič, B.J.; Blažič, A.J. Overcoming the digital divide with a modern approach to learning digital skills for the elderly adults. Educ. Inf. Technol. 2020, 25, 259–279. [Google Scholar] [CrossRef]
- Smith, M.W.; Sharit, J.; Czaja, S.J. Aging, Motor Control, and the Performance of Computer Mouse Tasks. Hum. Factors 1999, 41, 389–396. [Google Scholar] [CrossRef]
- Heuninckx, S.; Wenderoth, N.; Swinnen, S.P. Systems Neuroplasticity in the Aging Brain: Recruiting Additional Neural Resources for Successful Motor Performance in Elderly Persons. J. Neurosci. 2008, 28, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasylenko, O.; Gorecka, M.M.; Rodríguez-Aranda, C. Manual dexterity in young and healthy older adults. 1. Age-and gender-related differences in unimanual and bimanual performance. Dev. Psychobiol. 2018, 60, 407–427. [Google Scholar] [CrossRef]
- Tao, D.; Yuan, J.; Liu, S.; Qu, X. Effects of button design characteristics on performance and perceptions of touchscreen use. Int. J. Ind. Ergon. 2018, 64, 59–68. [Google Scholar] [CrossRef]
- Borsci, S.; Federici, S.; Lauriola, M. On the dimensionality of the System Usability Scale: A test of alternative measurement models. Cogn. Process. 2009, 10, 193–197. [Google Scholar] [CrossRef]
- Kalisch, T.; Wilimzig, C.; Kleibel, N.; Tegenthoff, M.; Dinse, H.R. Age-Related Attenuation of Dominant Hand Superiority. PLoS ONE 2006, 1, e90. [Google Scholar] [CrossRef]
- Przybyla, A.; Haaland, K.Y.; Bagesteiro, L.B.; Sainburg, R.L. Motor asymmetry reduction in older adults. Neurosci. Lett. 2011, 489, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulde, P.; Schmidle, S.; Aumüller, A.; Hermsdörfer, J. The effects of speed of execution on upper-limb kinematics in activities of daily living with respect to age. Exp. Brain Res. 2019, 237, 1383–1395. [Google Scholar] [CrossRef] [PubMed]
- Pohl, P.S.; Winstein, C.J.; Fisher, B.E. The Locus of Age-Related Movement Slowing: Sensory Processing in Continuous Goal-Directed Aiming. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 1996, 51, P94–P102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Middle-Age Group (n = 25) | Elderly Group (n = 28) |
---|---|---|
Age in years, mean ± SD (range) | 53.4 ± 5.9 (46–63) | 81.9 ± 4.2 (75–90) |
Gender, n (%) Male/Female | 7 (25)/21 (75) | 6 (24)/19 (76) |
Use of assistive device, n (%) | 0 (0) | 7 (25) |
Task/Variable | Middle-Aged Group (n = 25) Dominant Nondominant | Elderly Group (n = 28) Dominant Nondominant | Group (p) | Hand (p) | ||
---|---|---|---|---|---|---|
1. Touch entire screen | ||||||
Reaction time (s) | 1.9 ± 1.1 | 1.4 ± 0.8 | 2.6 ± 1.2 | 2.3 ± 1.5 | 0.0002 | 0.02 |
# Taps | 162.7 ± 37.7 | 153.4 ± 32.4 | 139.2 ± 32.2 | 114.0 ± 26.5 | 0.0007 | <0.0001 |
2. Touch corners | ||||||
Reaction time (s) | 1.2 ± 0.5 | 1.0 ± 0.4 | 2.0 ± 1.2 | 1.6 ± 0.7 | <0.0001 | NS |
Test duration (s) | 10.7 ± 0.8 | 10.8 ± 0.8 | 11.6 ± 1.1 | 11.4 ± 1.2 | 0.0001 | NS |
# Taps | 8.6 ± 0.9 | 8.4 ± 0.8 | 9.2 ± 1.9 | 10.0 ± 4.2 | NS | NS |
# Correct Attempts | 8.0 ± 0.0 | 8.0 ± 0.5 | 8.1 ± 0.7 | 9.0 ± 2.6 | NS | NS |
# Touches outside target | 0.6 ± 0.9 | 0.3 ± 0.6 | 1.1 ± 1.8 | 0.8 ± 1.6 | NS | NS |
Flight time (s) | 7.2 ± 0.7 | 7.5 ± 0.5 | 8.00 ± 0.9 | 10.6 ± 15.6 | 0.0002 | NS |
Touch time (s) | 0.6 ± 0.3 | 0.7 ± 0.3 | 0.9 ± 0.6 | 1.8 ± 3.1 | <0.0001 | 0.012 |
3. Double tap | ||||||
Reaction time (s) | 1.1 ± 0.5 | 1.0 ± 0.3 | 1.8 ± 0.7 | 1.7 ± 0.7 | <0.0001 | NS |
Test duration (s) | 8.4 ± 1.5 | 8.3 ± 1.2 | 18.2 ± 10.3 | 20.1 ± 11.5 | <0.0001 | NS |
# taps | 10.7 ± 2.4 | 10.4 ± 1.1 | 19.3 ± 12.0 | 22.4 ± 12.8 | <0.0001 | NS |
# Correct Attempts | 10.0 ± 0.2 | 13.6 ± 18.0 | 9.1 ± 2.5 | 8.4 ± 3.0 | 0.03 | NS |
# Touches outside target | 0.6 ± 1.9 | 0.2 ± 1.0 | 1.9 ± 2.0 | 1.9 ± 6.0 | 0.0007 | NS |
Flight time (s) | 5.3 ± 1.5 | 5.0 ± 1.1 | 13.7 ± 8.4 | 14.6 ± 9.4 | <0.0001 | NS |
Touch time (s) | 0.5 ± 0.2 | 0.7 ± 0.2 | 1.9 ± 2.0 | 4.3 ± 9.6 | <0.0001 | 0.0004 |
4. Drag to different directions | ||||||
Reaction time (s) | 2.0 ± 0.8 | 1.6 ± 0.5 | 4.5 ± 2.6 | 3.3 ± 2.2 | <0.0001 | 0.00132 |
Test duration (s) | 29.7 ± 15.0 | 25.9 ± 11.9 | 58.7 ± 24.0 | 59.0 ± 24.9 | <0.0001 | NS |
# Drag attempts | 8.1 ± 3.4 | 6.2 ± 1.9 | 14.8 ± 9.4 | 11.1 ± 7.6 | <0.0001 | 0.0002 |
# Drags completed | 4.9 ± 0.3 | 3.9 ± 1.6 | 3.8 ± 1.5 | 4.7 ± 0.6 | NS | NS |
# Touches outside target | 1.6 ± 1.6 | 2.7 ± 3.7 | 9.6 ± 11.5 | 14.0 ± 11.6 | <0.0001 | NS |
Flight time (s) | 12.5 ± 6.3 | 9.7 ± 6.8 | 27.1 ± 9.9 | 23.1 ± 9.7 | <0.0001 | 0.013 |
Touch time (s) | 13.7 ± 8.2 | 13.2 ± 5.8 | 19.4 ± 7.6 | 17.5 ± 7.6 | 0.0002 | NS |
5. Drag along a horizontal path | ||||||
Reaction time (s) | 2.0 ± 1.4 | 1.0 ± 0.3 | 14.2 ± 50.8 | 2.8 ± 1.8 | <0.000 | <0.0001 |
Test duration (s) | 13.0 ± 2.2 | 12.3 ± 3.7 | 19.6 ± 6.6 | 17.5 ± 4.5 | <0.0001 | NS |
# Drag attempts | 5.1 ± 2.1 | 4.8 ± 2.0 | 5.7 ± 7.3 | 5.3 ± 2.7 | NS | NS |
# Drags completed | 3.0 ± 0 | 3.0 ± 0 | 3.0 ± 0 | 3.0 ± 0 | NS | NS |
# Touches outside target | 0.4 ± 0.7 | 0.1 ± 0.3 | 0.7 ± 1.4 | 1.0 ± 1.4 | 0.03 | NS |
Flight time (s) | 5.5 ± 1.9 | 4.2 ± 1.7 | 8.9 ± 4.1 | 7.6 ± 3.8 | 0.04 | NS |
Touch time (s) | 5.2 ± 1.2 | 5.9 ± 2.4 | 8.2 ± 4.1 | 7.4 ± 2.5 | 0.0001 | NS |
6. Pinch | ||||||
1.6 ± 2.2 | 1.1 ± 0.4 | 2.6 ± 2.0 | 1.9 ± 1.6 | 0.0008 | NS | |
9.2 ± 6.8 | 9.9 ± 7.4 | 17.2 ± 12.5 | 12.6 ± 9.5 | <0.0001 | NS | |
4.0 ± 9.1 | 4.2 ± 8.8 | 11.6 ± 24.4 | 3.44 ± 6.3 | NS | NS | |
4.2 ± 6.0 | 4.5 ± 4.4 | 10.0 ± 9.1 | 5.6 ± 4.2 | <0.000 | NS | |
2.3 ± 1.7 | 2.8 ± 3.4 | 7.0 ± 14.5 | 4.4 ± 6.2 | 0.0006 | NS |
Middle-Aged (n = 25) | Elderly (n = 27) | p Value | |||
---|---|---|---|---|---|
Item | Original Score (1–5) | Transformed and Reversed Score (1–4) | Original Score (1–5) | Transformed and Reversed Score (1–4) | |
1. I think that I would like to use this system frequently. | 3.4 ± 1.76 | 2.4 ± 1.76 | 3.22 ± 1.69 | 2.22 ± 1.69 | NS |
2. I found the system unnecessarily complex. | 1.28 ± 0.89 | 3.7 ± 0.89 | 1.48 ± 1.19 | 3.52 ± 1.19 | NS |
3. I thought the system was easy to use. | 4.80 ± 0.50 | 3.8 ± 0.50 | 4.52 ± 0.98 | 3.52 ± 0.98 | NS |
4. I think that I would need the support of a technical person to be able to use this system. | 1.92 ± 1.58 | 3.1 ± 1.58 | 2.15 ± 1.68 | 2.85 ± 1.68 | NS |
5. I found the various functions in this system were well integrated. | 4.04 ± 1.37 | 3.0 ± 1.37 | 4.11 ± 1.28 | 3.11 ± 1.28 | NS |
6. I thought there was too much inconsistency in this system. | 1.56 ± 1.04 | 3.4 ± 1.04 | 1.78 ± 1.37 | 3.22 ± 1.37 | NS |
7. I would imagine that most people would learn to use this system very quickly. | 3.80 ± 1.68 | 2.8 ± 1.68 | 3.81 ± 1.57 | 2.81 ± 1.57 | NS |
8. I found the system very cumbersome to use. | 1.32 ± 0.95 | 3.7 ± 0.95 | 1.37 ± 1.01 | 3.63 ± 1.01 | NS |
9. I felt very confident using the system. | 4.56 ± 1.00 | 3.6 ± 1.00 | 4.51 ± 0.56 | 3.81 ± 0.56 | NS |
10. I needed to learn a lot of things before I could get going with this system. | 1.40 ± 0.96 | 3.6 ± 0.96 | 1.63 ± 1.33 | 3.37 ± 1.33 | NS |
Total score | 82.8 ± 13.7 | 80.2 ± 17.9 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elboim-Gabyzon, M.; Weiss, P.L.; Danial-Saad, A. Effect of Age on the Touchscreen Manipulation Ability of Community-Dwelling Adults. Int. J. Environ. Res. Public Health 2021, 18, 2094. https://doi.org/10.3390/ijerph18042094
Elboim-Gabyzon M, Weiss PL, Danial-Saad A. Effect of Age on the Touchscreen Manipulation Ability of Community-Dwelling Adults. International Journal of Environmental Research and Public Health. 2021; 18(4):2094. https://doi.org/10.3390/ijerph18042094
Chicago/Turabian StyleElboim-Gabyzon, Michal, Patrice L. Weiss, and Alexandra Danial-Saad. 2021. "Effect of Age on the Touchscreen Manipulation Ability of Community-Dwelling Adults" International Journal of Environmental Research and Public Health 18, no. 4: 2094. https://doi.org/10.3390/ijerph18042094
APA StyleElboim-Gabyzon, M., Weiss, P. L., & Danial-Saad, A. (2021). Effect of Age on the Touchscreen Manipulation Ability of Community-Dwelling Adults. International Journal of Environmental Research and Public Health, 18(4), 2094. https://doi.org/10.3390/ijerph18042094