sustainability-logo

Journal Browser

Journal Browser

Sustainable Construction Through Utilization of Optimization Tools and Experimental Methods: 2nd Edition

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainable Engineering and Science".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 841

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, 2000 Maribor, Slovenia
Interests: civil engineering; construction management; project scheduling; optimization; mathematical programming; mixed-integer nonlinear programming
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, 2000 Maribor, Slovenia
Interests: civil engineering; structural design; computational methods; optimization; mathematical programming; mixed-integer nonlinear programming
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Sustainability is dedicated to the latest developments in the field of sustainable construction through the utilization of optimization tools and experimental methods. In this context, submissions of original scientific works, as well as review papers coping with contemporary topics related to economic viability, social equity, and environmental protection that arise at any phase of a construction project, are welcome.

On the one hand, this Special Issue aims to publish influential and innovative articles that deal with the challenges of construction sustainability through the usage of optimization tools that involve either exact mathematical programming or meta/hyper/bio-heuristics, alternatively hybrid approaches or multi-criteria decision-making techniques. On the other hand, field or laboratory research on materials, products, structures, objects, or operations often provides key data for developing optimization models. Therefore, the submission of papers engaging with experimental methods to address current issues associated with sustainable construction is also encouraged. In addition, scientific works that combine optimization tools and experimental methods to reach synergistic effects in favor of sustainable construction are particularly desirable here. Created on these bases, the Special Issue intends to contribute the new knowledge needed to advance sustainable construction practices.

In this manner, we kindly invite you to submit your present work to this Special Issue.

Prof. Dr. Uroš Klanšek
Dr. Tomaž Žula
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable building
  • construction management
  • project scheduling
  • production processes
  • site layout planning
  • structural design
  • materials research
  • environmental engineering
  • technology development
  • optimization
  • mathematical programming
  • heuristics
  • hybrid approaches
  • multi-criteria decision-making techniques
  • experimental methods

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 3965 KB  
Article
A Digital Twin Approach to Sustainable Disaster Management: Case of Cayirova
by Mustafa Korkmaz, Yasemin Ezgi Akyildiz, Sevilay Demirkesen, Selcuk Toprak, Paweł Nowak and Bunyamin Ciftci
Sustainability 2025, 17(21), 9626; https://doi.org/10.3390/su17219626 - 29 Oct 2025
Abstract
Disaster management requires the development of effective technologies for managing both pre-and post-disaster processes. Therefore, utilizing effective tools and techniques to mitigate the disaster risks or lower the adversarial impacts is essential. Over the last decade, digital twin (DT) applications have found a [...] Read more.
Disaster management requires the development of effective technologies for managing both pre-and post-disaster processes. Therefore, utilizing effective tools and techniques to mitigate the disaster risks or lower the adversarial impacts is essential. Over the last decade, digital twin (DT) applications have found a wider implementation area for varying purposes, but most importantly, they are utilized for simulating disaster impacts. This study aims to develop an open-source digital twin (DT) framework for earthquake disaster management in the Cayirova district of Kocaeli, Türkiye, one of the country’s most seismically active regions. The primary objective is to enhance local resilience by integrating multi-source data into a unified digital environment that supports risk assessment, response planning, and recovery coordination. The digital model developed using QGIS (3.40.9 Bratislava), Autodesk InfraWorks 2025 software for DT modeling integrates various data types, including geospatial, environmental, transportation, utility, and demographic data. As a result, the developed model is expected to be used as a digital database for disaster management, storing both geospatial and building data in a unified structure. The developed model also aims to contribute to sustainable practices in cities, where disaster risks are particularly critical. In this respect, the developed model is expected to create sustainable logistics chains and sustainable targets aiming to reduce the number of people affected by disasters, reducing the direct economic losses caused by disasters. In this framework, the developed model is expected to further assess seismic risk and mitigate risks with DTs. These capabilities enable the project to establish an open-source district-level DT system implemented for the first time in Cayirova, provide an alternative disaster model focused on region-specific earthquakes, and integrate 2D/3D assets into an operational, ready-to-respond digital database. In terms of practical importance, the model provides a digital database (digital backup) that can be used in emergencies, helping decision-makers make faster, data-driven decisions. The significance of this study lies in bridging the gap between urban digitalization and disaster resilience by providing a scalable and transparent tool for local governments. Ultimately, the developed DT contributes to sustainable urban management, enhancing preparedness, adaptive capacity, and post-disaster recovery efficiency. Full article
Show Figures

Figure 1

18 pages, 5287 KB  
Article
Heuristic Optimization Rules Applied for the Sustainable Design of Lightweight Engineering Structures Under Loads Subject to Random Changes
by Katarzyna Tajs-Zielińska and Bogdan Bochenek
Sustainability 2025, 17(15), 7011; https://doi.org/10.3390/su17157011 - 1 Aug 2025
Viewed by 557
Abstract
In engineering design, optimization is crucial for achieving sustainable goals. This involves creating environmentally responsible structures. Optimizing the design is the first step in reducing the environmental impact of construction. Topology optimization (TO) is one way to do this. TO is the process [...] Read more.
In engineering design, optimization is crucial for achieving sustainable goals. This involves creating environmentally responsible structures. Optimizing the design is the first step in reducing the environmental impact of construction. Topology optimization (TO) is one way to do this. TO is the process of designing the material layout in the design domain according to selected criteria. The criteria can be explicitly defined to promote sustainability. As a result, a new structure topology is proposed to make the structure both lightweight and durable, with the aim of improving its functionality and reducing its environmental impact. In optimal engineering design, it is particularly important to take into account the structure’s special operating conditions, e.g., loads subject to random changes. Predicting topologies under such conditions is important since random load changes can significantly affect the resulting topologies. In this paper, an easy to implement numerical method for this kind of problem is proposed. The basic idea is to transform a random loads case into the deterministic problem of multiple loads. A heuristic method of Cellular Automata is proposed as a numerical optimization tool. The examples of topology optimization have been performed to illustrate the concept, confirming the efficiency, versatility, and ease of its implementation. Full article
Show Figures

Figure 1

Back to TopTop