sensors-logo

Journal Browser

Journal Browser

Sensors and Sensor Systems for Atmospheric and Environmental Pollution Monitoring

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Chemical Sensors".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 9291

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Atmospheric Pollution Research, National Research Council of Italy, 00015 Monterotondo, Italy
Interests: sensors; nanomaterials; electronic; pollution; QCM; acoustic sensor
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue on “Sensors and Sensor Systems for Atmospheric and Environmental Pollution Monitoring” aims to provide a comprehensive overview of the latest research trends, technologies, and applications in the field of pollution monitoring. The continuous growth in human activities has led to an alarming increase in pollution, which poses significant health risks to humans and the environment. Sensors and sensor systems have emerged as a valuable tool for real-time environmental pollution, for example, in air pollution monitoring and enabling the accurate identification and tracking of pollutants such as particulate matter, NOx, SO2, and many others. In land or soil monitoring, sensors are able to assess and measures concentrations of chemicals such as persistent organic pollutants. This Special Issue will cover a wide range of topics related to atmospheric and environmental pollution monitoring, including novel sensor fabrication techniques, signal processing and data analysis methods, wireless communication protocols, and application case studies.

Contributions are welcome from both academia and industry to offer a platform for interdisciplinary discussions and collaborations that can lead to innovative solutions to tackle the challenges posed by air pollution. We hope this Special Issue will serve as a valuable reference for researchers and engineers who are working towards improving the quality of our air and protecting public health.

Dr. Emiliano Zampetti
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • chemical sensors
  • physical sensors
  • chemical sensor array
  • electronic nose
  • smart sensors
  • sensor networks
  • wireless sensors
  • materials for chemical sensors
  • sensors for soil contaminants
  • sensors for environmental disaster

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

36 pages, 10632 KiB  
Article
SQM Ageing and Atmospheric Conditions: How Do They Affect the Long-Term Trend of Night Sky Brightness Measurements?
by Pietro Fiorentin, Stefano Cavazzani, Andrea Bertolo, Sergio Ortolani, Renata Binotto and Ivo Saviane
Sensors 2025, 25(2), 516; https://doi.org/10.3390/s25020516 - 17 Jan 2025
Viewed by 748
Abstract
The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the [...] Read more.
The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the Veneto Region (Italy) and at La Silla (Chile). The analysis mainly revealed a tendency toward reductions in measured NSB due to both instrument ageing and atmospheric variations. This work compared the component due to instrumental ageing with the contribution of atmospheric conditions. The spectral responsivity of two SQMs working outdoors were analysed in a laboratory after several years of operation, revealing a significant decay, but not enough to justify the measured long-term trends. The contribution of atmospheric variations was studied through the analysis of solar irradiance at the ground, considering it as an indicator of air transparency, and values of the aerosol optical depth obtained from satellite measurements. The long-term trends measured by weather stations at different altitudes and conditions indicated an increase in solar irradiance in the Italian study sites. The comparison among the daily irradiance increase, the reduction in the aerosol optical depth, and the NSB measurements highlighted a darker sky for sites contaminated by light pollution (LP) and a brighter sky for sites not affected by LP, showing a significant and predominant role of atmospheric conditions in relation to NSB change. In the most significant case, the fraction of the variation in NSB explained by AOD changes exceeded 75%. Full article
Show Figures

Figure 1

18 pages, 4506 KiB  
Article
Three-Dimensionally Printed Mini Air Scrubbing Cartridges Based on Nano-Graphite for Air Pollution Monitoring
by Emiliano Zampetti, Mattia Ammiraglia, Marco Conti, Cassandra Montiroli, Paolo Papa, Daniele Bianconi and Antonella Macagnano
Sensors 2025, 25(1), 122; https://doi.org/10.3390/s25010122 - 28 Dec 2024
Viewed by 844
Abstract
Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements [...] Read more.
Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements of 3D printing technology have pushed researchers to exploit, in different fields of applications, the advantages offered, such as rapid prototyping and low-cost replication of complex sample treatment devices. In this work, we present the fabrication and testing of 3D printed cartridges based on both commercial photopolymer and a modified version with the intrusion of nano graphite. The air scrubbing performances towards some volatile organic compounds have been investigated, inserting the cartridges into a low-cost monitoring system using a photoionization sensor. In particular, the cartridges were tested in the presence of concentrations of ethanol, benzene, and toluene to evaluate the abatement percentage with and without their use. Although the results have shown that all cartridges abated ethanol and toluene, the abatement of benzene increased 20 times in the case of cartridges based on modified resin with nano graphite. These results could enable their employment to reduce the concentration of interfering compounds in low-cost monitoring systems. Full article
Show Figures

Figure 1

17 pages, 5164 KiB  
Article
The Ion Formation and Quantitative Response of Isoprene, Monoterpenes and Terpenoids in Ion Mobility Spectrometry with Atmospheric-Pressure Chemical Ionization as a Function of Temperature
by Thomas Mayer, Ralf Petrich and Helko Borsdorf
Sensors 2024, 24(24), 7976; https://doi.org/10.3390/s24247976 - 13 Dec 2024
Viewed by 664
Abstract
Ion mobility spectrometry is successfully used as a sensor technology for different applications. A feature of this method is that characteristic ion mobility spectra are obtained for each measurement rather than a sum signal. The spectra result from the different drift velocities of [...] Read more.
Ion mobility spectrometry is successfully used as a sensor technology for different applications. A feature of this method is that characteristic ion mobility spectra are obtained for each measurement rather than a sum signal. The spectra result from the different drift velocities of ions in a drift tube at atmospheric pressure. In this study, we investigated the ion formation processes and the quantitative response of isoprene, monoterpenes and monoterpenoids as a function of the temperature of the spectrometer using a tritium ionization source. These substances are important target analytes in atmospheric monitoring and in the analysis of essential oils in different matrices. A drift tube temperature above 120 °C permitted the most sensitive detection of isoprene and monoterpenes, while 80 °C was sufficient for the sensitive detection of most terpenoids. Dimer ions were formed for isoprene over the whole temperature range. The ionization processes of monoterpenes and terpenoids were strongly influenced by the temperature. At temperatures of 40 °C, adduct ions were formed in addition to MH+ ions for monoterpenes. Enhanced temperatures provided a single peak with the same drift time for all monoterpenes. Structural differences influenced the ion formation of terpenoids, and much more complex spectra were obtained. The nature of the product ions changed depending on the temperature. Full article
Show Figures

Figure 1

12 pages, 3618 KiB  
Communication
Analysis of Trace Heavy Metal in Solution Using Liquid Cathode Glow Discharge Spectroscopy
by Duixiong Sun, Xinrong Ma, Jiawei Chang, Guoding Zhang, Maogen Su, Marek Sikorski, Vincent Detalle and Xueshi Bai
Sensors 2024, 24(23), 7756; https://doi.org/10.3390/s24237756 - 4 Dec 2024
Viewed by 978
Abstract
Heavy metal pollution, particularly from cadmium (Cd) and copper (Cu), poses significant environmental and health risks. To address the need for efficient, portable, and sensitive detection methods, this study introduces an improved atmospheric pressure glow discharge atomic emission spectrometry (APGD-AES) technique for quantifying [...] Read more.
Heavy metal pollution, particularly from cadmium (Cd) and copper (Cu), poses significant environmental and health risks. To address the need for efficient, portable, and sensitive detection methods, this study introduces an improved atmospheric pressure glow discharge atomic emission spectrometry (APGD-AES) technique for quantifying Cd and Cu in water samples. The APGD-AES method offers key advantages, including low energy consumption (<33 W), high excitation energy, and compact design. The system was optimized for a discharge voltage of 550 V (Cd) and 570 V (Cu), a flow rate of 3.6 mL/min, and a solution pH of 1.0. Under these conditions, detection limits reached 16 µg/L for Cd and 1.3 µg/L for Cu. APGD-AES was tested on real water samples, including sewage and tap water, demonstrating compliance with national safety standards and comparable performance to graphite furnace atomic absorption spectrometry (GFAAS). This technique shows promise for real-time, on-site monitoring of trace heavy metals due to its portability, precision, and cost-efficiency. Full article
Show Figures

Figure 1

12 pages, 1606 KiB  
Article
Comparison of Sub-Ppm Instrument Response Suggests Higher Detection Limits Could Be Used to Quantify Methane Emissions from Oil and Gas Infrastructure
by Stuart N. Riddick, Mercy Mbua, Ryan Brouwer, Ethan W. Emerson, Abhinav Anand, Elijah Kiplimo, Seunfunmi Ojomu, Jui-Hsiang Lo and Daniel J. Zimmerle
Sensors 2024, 24(11), 3407; https://doi.org/10.3390/s24113407 - 25 May 2024
Cited by 2 | Viewed by 1638
Abstract
Quantifying and controlling fugitive methane emissions from oil and gas facilities remains essential for addressing climate goals, but the costs associated with monitoring millions of production sites remain prohibitively expensive. Current thinking, supported by measurement and simple dispersion modelling, assumes single-digit parts-per-million instrumentation [...] Read more.
Quantifying and controlling fugitive methane emissions from oil and gas facilities remains essential for addressing climate goals, but the costs associated with monitoring millions of production sites remain prohibitively expensive. Current thinking, supported by measurement and simple dispersion modelling, assumes single-digit parts-per-million instrumentation is required. To investigate instrument response, the inlets of three trace-methane (sub-ppm) analyzers were collocated on a facility designed to release gas of known composition at known flow rates between 0.4 and 5.2 kg CH4 h−1 from simulated oil and gas infrastructure. Methane mixing ratios were measured by each instrument at 1 Hertz resolution over nine hours. While mixing ratios reported by a cavity ring-down spectrometer (CRDS)-based instrument were on average 10.0 ppm (range 1.8 to 83 ppm), a mid-infrared laser absorption spectroscopy (MIRA)-based instrument reported short-lived mixing ratios far larger than expected (range 1.8 to 779 ppm) with a similar nine-hour average to the CRDS (10.1 ppm). We suggest the peaks detected by the MIRA are likely caused by a micrometeorological phenomenon, where vortex shedding has resulted in heterogeneous methane plumes which only the MIRA can observe. Further analysis suggests an instrument like the MIRA (an optical-cavity-based instrument with cavity size ≤10 cm3 measuring at ≥2 Hz with air flow rates in the order of ≤0.3 slpm at distances of ≤20 m from the source) but with a higher detection limit (25 ppm) could detect enough of the high-concentration events to generate representative 20 min-average methane mixing ratios. Even though development of a lower-cost, high-precision, high-accuracy instrument with a 25 ppm detection threshold remains a significant problem, this has implications for the use of instrumentation with higher detection thresholds, resulting in the reduction in cost to measure methane emissions and providing a mechanism for the widespread deployment of effective leak detection and repair programs for all oil and gas infrastructure. Full article
Show Figures

Figure 1

17 pages, 6108 KiB  
Article
A Long-Term Comparison between the AethLabs MA350 and Aerosol Magee Scientific AE33 Black Carbon Monitors in the Greater Salt Lake City Metropolitan Area
by Daniel L. Mendoza, L. Drew Hill, Jeffrey Blair and Erik T. Crosman
Sensors 2024, 24(3), 965; https://doi.org/10.3390/s24030965 - 1 Feb 2024
Cited by 4 | Viewed by 3277
Abstract
Black carbon (BC) or soot contains ultrafine combustion particles that are associated with a wide range of health impacts, leading to respiratory and cardiovascular diseases. Both long-term and short-term health impacts of BC have been documented, with even low-level exposures to BC resulting [...] Read more.
Black carbon (BC) or soot contains ultrafine combustion particles that are associated with a wide range of health impacts, leading to respiratory and cardiovascular diseases. Both long-term and short-term health impacts of BC have been documented, with even low-level exposures to BC resulting in negative health outcomes for vulnerable groups. Two aethalometers—AethLabs MA350 and Aerosol Magee Scientific AE33—were co-located at a Utah Division of Air Quality site in Bountiful, Utah for just under a year. The aethalometer comparison showed a close relationship between instruments for IR BC, Blue BC, and fossil fuel source-specific BC estimates. The biomass source-specific BC estimates were markedly different between instruments at the minute and hour scale but became more similar and perhaps less-affected by high-leverage outliers at the daily time scale. The greater inter-device difference for biomass BC may have been confounded by very low biomass-specific BC concentrations during the study period. These findings at a mountainous, high-elevation, Greater Salt Lake City Area site support previous study results and broaden the body of evidence validating the performance of the MA350. Full article
Show Figures

Figure 1

Back to TopTop