sensors-logo

Journal Browser

Journal Browser

Intelligent Massive-MIMO Systems and Wireless Communications

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Intelligent Sensors".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 2835

Special Issue Editors


E-Mail Website
Guest Editor
National and Kapodistrian University of Athens, Athens, Greece
Interests: interests: 5G wireless communications; radio communications; cellular networks; MIMO systems; adaptive antennas; LTE; cross-layer design
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Digital Industry Technologies, National and Kapodistrian University of Athens, Thesi Skliro, 34400 Evia, Greece
Interests: stochastic modeling of wireless communication channels; design and performance analysis of V2X communication systems
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Core Department, National and Kapodistrian University of Athens, Athens, Greece
Interests: optimization and machine learning for signal processing and communications

Special Issue Information

Dear Colleagues,

The deployment of the fifth-generation (5G) networks has already starting taking place, aiming to provide improved data rates to mobile users, higher spectral end energy efficiency, as well as coverage in harsh propagation conditions. To this end, two key novel technologies in the physical layer include the deployment of a very large number of transmitting antennas to access points, also known as massive multiple input multiple output (m-MIMO), as well as the use of millimeter-wave transmission; however, conventional beamforming techniques with a dedicated radio frequency (RF) chain per transmitting antenna cannot be directly applicable in m-MIMO topologies, as this would significantly increase hardware and computational complexity. In this context, an alternate approach is based on the use of an RF chain for a specific group of transmitting antennas while their phases are controlled by the analog part. Recent studies have shown that the performance of this sub-optimal architectural approach, also known as hybrid-beamforming, can nearly reach the performance of fully digital m-MIMO configurations.

It becomes apparent from the above that efficient hybrid beamforming techniques are extremely important in broadband wireless networks, since apart from reduced computational load they can leverage energy efficient solutions, which is a key concept towards decentralized connectivity approaches.

This Special Issue addresses all recent developments in m-MIMO techniques for broadband wireless networks. Indicative topics include:

  • Hybrid beamforming techniques;
  • Machine-learning aided solutions;
  • Design of energy efficient m-MIMO transceivers;
  • Cell-free m-MIMO;
  • NOMA-based m-MIMO;
  • Secure communications in m-MIMO scenarios;
  • IRS-assisted m-MIMO systems;
  • Channel measurements, characteristics, and modeling;
  • Joint radar and communication systems

Dr. Panagiotis K. Gkonis
Dr. Petros S. Bithas
Dr. Christos G. Tsinos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • adaptive antennas
  • MIMO systems
  • wireless communication
  • channel modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 5507 KiB  
Article
A Novel Space–Time Coding Echo Separation Scheme with Orthogonal Frequency Division Multiplexing Chirp Waveforms for Multi-Input Multi-Output Synthetic Aperture Radar
by Kai Yao and Chang Liu
Sensors 2025, 25(6), 1717; https://doi.org/10.3390/s25061717 - 10 Mar 2025
Viewed by 425
Abstract
Multi-input Multi-output Synthetic Aperture Radar (MIMO-SAR) systems significantly improve the performance of traditional SAR systems by providing more system freedom. However, in the working mode of the simultaneous transceiver, each receiving antenna will receive the scattered echoes of all transmitting antennas, resulting in [...] Read more.
Multi-input Multi-output Synthetic Aperture Radar (MIMO-SAR) systems significantly improve the performance of traditional SAR systems by providing more system freedom. However, in the working mode of the simultaneous transceiver, each receiving antenna will receive the scattered echoes of all transmitting antennas, resulting in the overlapping of echo data and serious related interference, which becomes the main obstacle to the further development and application of MIMO-SAR system. Therefore, achieving effective echo separation is the key technical challenge faced by the MIMO-SAR system. Space–time coding (STC) uses multiple dimensions, such as space, time, and frequency. Through the process of encoding and decoding in these dimensions, channel information can be obtained, and echo separation can be realized. STC is suitable for MIMO-SAR system on different platforms, such as airborne, and has wide applicability. When the traditional scheme uses STC as a coding scheme, it is generally limited by the two-dimensional sending and receiving matrix of Alamouti code. To solve this problem, a new STC scheme based on complex orthogonal matrix design is proposed in this paper. The scheme can form a multidimensional orthogonal STC matrix, recover the superposed signal by echo decoding, and improve the echo signal-to-noise ratio (SNR) of MIMO-SAR. In addition, the use of orthogonal frequency division multiplexing (OFDM) waveform can further reduce cross-correlation interference to achieve effective separation of MIMO-SAR echoes. The effectiveness of the waveform scheme is verified by numerical experiments. Full article
(This article belongs to the Special Issue Intelligent Massive-MIMO Systems and Wireless Communications)
Show Figures

Figure 1

17 pages, 8340 KiB  
Article
Adaptive Beamforming, Cell-Free Resource Allocation and NOMA in Large-Scale Wireless Networks
by Panagiotis Gkonis, Spyros Lavdas, George Vardoulias, Panagiotis Trakadas, Lambros Sarakis and Konstantinos Papadopoulos
Sensors 2024, 24(23), 7548; https://doi.org/10.3390/s24237548 - 26 Nov 2024
Viewed by 702
Abstract
The goal of the study presented in this work is to evaluate the performance of a proposed adaptive beamforming approach when combined with non-orthogonal multiple access (NOMA) in cell-free massive multiple input multiple output (CF m-MIMO) orientations. In this context, cooperative beamforming is [...] Read more.
The goal of the study presented in this work is to evaluate the performance of a proposed adaptive beamforming approach when combined with non-orthogonal multiple access (NOMA) in cell-free massive multiple input multiple output (CF m-MIMO) orientations. In this context, cooperative beamforming is employed taking into consideration the geographically adjacent access points (APs) of a virtual cell, aiming to minimize co-channel interference (CCI) among mobile stations (MSs) participating in NOMA transmission. Performance is evaluated statistically via extensive Monte Carlo (MC) simulations in a two-tier wireless orientation. As the results indicate, for high data rate services, various key performance indicators (KPIs) can be improved compared to orthogonal multiple access, such as the minimum number of users in the topology as well as the available PRBs for downlink transmission. Although in NOMA transmission more directional beamforming configurations are required to compensate for the increased CCI levels, the increase in the number of hardware elements is reduced compared to the corresponding gain in the considered KPIs. Full article
(This article belongs to the Special Issue Intelligent Massive-MIMO Systems and Wireless Communications)
Show Figures

Figure 1

20 pages, 9809 KiB  
Article
Small-Size Eight-Element MIMO Metamaterial Antenna with High Isolation Using Modal Significance Method
by Tirado-Mendez Jose Alfredo, Jardon-Aguilar Hildeberto, Flores-Leal Ruben, Rangel-Merino Arturo, Perez-Miguel Angel and Gomez-Villanueva Ricardo
Sensors 2024, 24(19), 6266; https://doi.org/10.3390/s24196266 - 27 Sep 2024
Viewed by 986
Abstract
This article presents a symmetrical reduced-size eight-element MIMO antenna array with high electromagnetic isolation among radiators. The array utilizes easy-to-build techniques to cover the n77 and n78 new radio (NR) bands. It is based on an octagonal double-negative metamaterial split-ring resonator (SRR), which [...] Read more.
This article presents a symmetrical reduced-size eight-element MIMO antenna array with high electromagnetic isolation among radiators. The array utilizes easy-to-build techniques to cover the n77 and n78 new radio (NR) bands. It is based on an octagonal double-negative metamaterial split-ring resonator (SRR), which enables a size reduction of over 50% for the radiators compared to a conventional disc monopole antenna by increasing the slow-wave factor. Additionally, due to the extreme proximity between the radiating elements in the array, the modal significance (MS) method was employed to identify which propagation modes had the most impact on the electromagnetic coupling among elements. This approach aimed to mitigate their effect by using an electromagnetic barrier, thereby enhancing electromagnetic isolation. The electromagnetic barriers, implemented with strip lines, achieved isolation values exceeding 20 dB for adjacent elements (<0.023 λ) and approaching 40 dB for opposite ones (<0.23 λ) after analyzing the surface current distribution by the MS method. The elements are arranged in axial symmetry, forming an octagon with each antenna port located on a side. The array occupies an area of 0.32 λ2 at 3.5 GHz, significantly smaller than previously published works. It exhibits excellent performance for MIMO applications, demonstrating an envelope correlation coefficient (ECC) below 0.0001, a total active reflection coefficient (TARC) lower than −10 dB for various incoming signals with random phases, and a diversity gain (DG) close to 20 dB. Full article
(This article belongs to the Special Issue Intelligent Massive-MIMO Systems and Wireless Communications)
Show Figures

Figure 1

Back to TopTop