sensors-logo

Journal Browser

Journal Browser

Mobile Robots for Navigation: 2nd Edition

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Sensors and Robotics".

Deadline for manuscript submissions: closed (25 September 2024) | Viewed by 1662

Special Issue Editors

Department of Mechanical Engineering and Mechatronics, Faculty of Engineering, Ariel University, P.O. Box 3, Ariel 407000, Israel
Interests: theoretical robotics; global motion planning; medical robotics; swarm robotics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
The Department of Mechanical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel
Interests: robotics; flexible robotics; motion planning; sensors

Special Issue Information

Dear Colleagues,

The long-anticipated goal of robot navigation in complex human-suited environments is still out of reach. The three levels of abstraction of robot navigation systems are the geometric navigation paradigm, topological navigation paradigm, and semantic navigation paradigm. While the classic geometric navigation aim is to generate a metric map and move through path planners, topological map representations require rethinking of the motion-planning concepts but are much less expensive to maintain. The semantic navigation paradigm is flexible and robust but requires an understanding of the environment, the objects it contains, and place recognition.

This Special Issue will focus on mobile robot or robot swarm navigation systems, mobile robot SLAM, and real-time 3D motion planning at all levels of abstraction. We welcome original, state-of-the-art studies in areas that contribute to academia and industry. This Special Issue will cover, but is not limited to, the following:

  1. Swarm path planning and ego structuring;
  2. Self-localization;
  3. Map building and map interpretation;
  4. Representations of the environment;
  5. Robot navigation systems related to indoor environments.

 

Prof. Dr. Nir Shvalb
Dr. Oded Medina
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Dr. Nir Shvalb
Dr. Oded Medina
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • navigation
  • motion planning
  • map structuring

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 7040 KiB  
Article
Virtual Obstacle Avoidance Strategy: Navigating through a Complex Environment While Interacting with Virtual and Physical Elements
by Fabiana Machado, Matheus Loureiro, Marcio Bezerra, Carla Zimerer, Ricardo Mello and Anselmo Frizera
Sensors 2024, 24(19), 6212; https://doi.org/10.3390/s24196212 - 25 Sep 2024
Viewed by 1260
Abstract
Robotic walking devices can be used for intensive exercises to enhance gait rehabilitation therapies. Mixed Reality (MR) techniques may improve engagement through immersive and interactive environments. This article introduces an MR-based multimodal human–robot interaction strategy designed to enable shared control with a Smart [...] Read more.
Robotic walking devices can be used for intensive exercises to enhance gait rehabilitation therapies. Mixed Reality (MR) techniques may improve engagement through immersive and interactive environments. This article introduces an MR-based multimodal human–robot interaction strategy designed to enable shared control with a Smart Walker. The MR system integrates virtual and physical sensors to (i) enhance safe navigation and (ii) facilitate intuitive mobility training in personalized virtual scenarios by using an interface with three elements: an arrow to indicate where to go, laser lines to indicate nearby obstacles, and an ellipse to show the activation zone. The multimodal interaction is context-based; the presence of nearby individuals and obstacles modulates the robot’s behavior during navigation to simplify collision avoidance while allowing for proper social navigation. An experiment was conducted to evaluate the proposed strategy and the self-explanatory nature of the interface. The volunteers were divided into four groups, with each navigating under different conditions. Three evaluation methods were employed: task performance, self-assessment, and observational measurement. Analysis revealed that participants enjoyed the MR system and understood most of the interface elements without prior explanation. Regarding the interface, volunteers who did not receive any introductory explanation about the interface elements were mostly able to guess their purpose. Volunteers that interacted with the interface in the first session provided more correct answers. In future research, virtual elements will be integrated with the physical environment to enhance user safety during navigation, and the control strategy will be improved to consider both physical and virtual obstacles. Full article
(This article belongs to the Special Issue Mobile Robots for Navigation: 2nd Edition)
Show Figures

Figure 1

Back to TopTop