Empowering Sensors in the Internet of Things with Tiny Machine Learning
A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Internet of Things".
Deadline for manuscript submissions: 5 June 2025 | Viewed by 1894
Special Issue Editors
Interests: ML/federated learning in wireless systems; heterogeneous networks; massive MIMO; reconfigurable intelligent surface-assisted networks; mmWave communication networks; energy harvesting; full-duplex communications; cognitive radio; small cell; non-orthogonal multiple access (NOMA); physical layer security; UAV networks; visible light communication; IoT system
Special Issues, Collections and Topics in MDPI journals
Interests: cryptography; mathematical cryptography; data security; network security; mobile communications; mobile computing; wireless communications
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
The aim of this special issue is to explore the potential of Tiny Machine Learning techniques in enhancing the capabilities of sensors in the context of the Internet of Things (IoT).
With the rapid growth of IoT applications, sensors play a crucial role in collecting and transmitting data. However, the limited resources of sensors often pose challenges in terms of data processing and analysis. Tiny Machine Learning offers a promising approach to address these challenges by providing lightweight machine learning algorithms and methods that can be deployed directly on sensors.
This special issue aims to bring together researchers and practitioners to discuss and showcase the latest advancements and applications of Tiny Machine Learning in empowering sensors within the IoT ecosystem. We invite original research articles, reviews, and perspectives on the following topics:
- Tiny Machine Learning algorithms for sensor data processing and analysis.
- Hardware and software platforms for implementing Tiny Machine Learning on sensors.
- Applications of Tiny Machine Learning in various IoT domains, including healthcare, environmental monitoring, smart cities, and industrial automation.
- Energy-efficient and resource-constrained machine learning models for sensors.
- Performance evaluation and benchmarking of Tiny Machine Learning techniques on sensor devices.
- Security and privacy considerations in deploying Tiny Machine Learning on sensors.
Dr. Dinh-Thuan Do
Prof. Dr. Cheng-Chi Lee
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- tiny machine learning
- Internet of Things
- data processing
- data analysis
- energy efficiency
- performance evaluation
- security
- privacy considerations
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.