sensors-logo

Journal Browser

Journal Browser

Novel Nanoprobes for Biomedical Sensing, Disease Detection, and Theranostic Applications

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Nanosensors".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 1172

Special Issue Editor

Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
Interests: chemical biology; nanomaterials; cancer theranostics

Special Issue Information

Dear Colleagues,

The development of multifunctional nanoprobes has revolutionized biomedical sensing and disease detection. These nanomaterials possess the ability to detect biomolecules with high sensitivity and specificity, enabling the early diagnosis of diseases such as cancer and infectious disorders. Recent advancements have expanded the role of nanoprobes into theranostic agents, integrating both diagnostic and therapeutic functions. Furthermore, integrating cutting-edge innovations like deep learning with nanoprobe technology has unlocked new possibilities for enhanced image processing, data analysis, and predictive diagnostics. By leveraging novel approaches, real-time monitoring and precision therapy can be optimized, paving the way for more personalized and effective healthcare solutions. This Special Issue will explore the latest breakthroughs in nanoprobe design and their applications in both diagnostics and therapy.

Dr. Ke Cheng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoprobes
  • biomedical sensing
  • disease detection
  • theranostics
  • deep learning
  • targeted therapy
  • smart nanodevices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 6865 KiB  
Article
Improving Stroke Treatment Using Magnetic Nanoparticle Sensors to Monitor Brain Thrombus Extraction
by Dhrubo Jyoti, Daniel Reeves, Scott Gordon-Wylie, Clifford Eskey and John Weaver
Sensors 2025, 25(3), 672; https://doi.org/10.3390/s25030672 - 23 Jan 2025
Viewed by 933
Abstract
(1) Background: Mechanical thrombectomy (MT) successfully treats ischemic strokes by extracting the thrombus, or clot, using a stent retriever to pull it through the blood vessel. However, clot slippage and/or fragmentation can occur. Real-time feedback to a clinician about attachment between the stent [...] Read more.
(1) Background: Mechanical thrombectomy (MT) successfully treats ischemic strokes by extracting the thrombus, or clot, using a stent retriever to pull it through the blood vessel. However, clot slippage and/or fragmentation can occur. Real-time feedback to a clinician about attachment between the stent and clot could enable more complete removal. We propose a system whereby antibody-targeted magnetic nanoparticles (NPs) are injected via a microcatheter to coat the clot, oscillating magnetic fields excite the particles, and a small coil attached to the catheter picks up a signal that determines the proximity of the clot to the stent. (2) Methods: We used existing simulation code to model the signal from NPs distributed on a hemispherical clot with three orthogonally applied magnetic fields. An in vitro apparatus was built that applied fields and read out signals from a 1.5 mm pickup coil at a variable distance and orientation angle from a sample of 100 nm iron oxide core/shell NPs. (3) Results: Our simulations suggest that the sum of the voltages induced in the pickup coil from three orthogonal applied fields could localize a clot to within 180 µm, regardless of the exact orientation of the pickup coil, with further precision added via rotation-correction formulae. Our experimental system validated simulations; we estimated an in vitro distance recovery precision of 41 µm with a pickup coil 1 mm from the clot. (4) Conclusions: Magnetic NP sensing could be a safe and real-time method to estimate whether a clot is attached to the stent retriever during MT. Full article
Show Figures

Figure 1

Back to TopTop