polymers-logo

Journal Browser

Journal Browser

Polymeric Composites for Electrical Insulation Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 837

Special Issue Editor


E-Mail Website
Guest Editor
Electrical and Electronic Department, Huazhong University of Science and Technology, Wuhan, China
Interests: high voltage and insulation technology; electrical equipment status perception and life prediction; power system overvoltage and insulation coordination

Special Issue Information

Dear Colleagues,

Polymer composites are extensively utilized in electrical insulation. However, the escalation of voltage levels and the broadening of application domains have imposed elevated standards on the dielectric, thermal, mechanical, and other properties of polymer composites to satisfy the heightened requirements for reliability, longevity, efficiency, and sustainability of high-voltage electrical equipment, power electronics, and related devices. This Special Issue of Polymers, titled "Polymeric Composites for Electrical Insulation Applications", seeks to discover, address, and distribute cutting-edge research to enhance the design, performance optimization, and practical application of polymer composite materials. This Special Issue invites academics to submit original research articles, reviews, and industrial case studies that emphasize the advancements of polymer composites in electrical insulation applications.

Dr. Dandan Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer composites
  • electrical insulation
  • high-voltage equipment
  • power electronics
  • dielectric properties
  • thermal properties
  • mechanical properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2609 KB  
Article
Research on Diagnostic Methods for Gas Generation Due to Degradation of Cable PVC Materials Under Electrical and Thermal Stress
by Peng Zhang, Xingwang Huang, Jingang Su, Zhen Liu, Xianhai Pang, Zihao Wang and Yidong Chen
Polymers 2025, 17(22), 3021; https://doi.org/10.3390/polym17223021 - 13 Nov 2025
Viewed by 656
Abstract
Polyvinyl chloride (PVC), owing to its excellent electrical properties and low cost, is widely applied in the inner insulation and outer sheath of cables. To achieve early fault warning based on characteristic gases, this study integrates experimental testing with molecular simulations to systematically [...] Read more.
Polyvinyl chloride (PVC), owing to its excellent electrical properties and low cost, is widely applied in the inner insulation and outer sheath of cables. To achieve early fault warning based on characteristic gases, this study integrates experimental testing with molecular simulations to systematically reveal the decomposition and gas generation characteristics of different PVC layers under electrical and thermal stresses. The results indicate that inner-layer PVC under electrical stress predominantly generates small-molecule olefins and halogenated hydrocarbons, while outer-layer PVC during thermal decomposition mainly produces hydrogen chloride, alkanes, and fragments of plasticizers. The surrounding atmosphere significantly regulates the gas generation pathways: air promotes the formation of CO2 and H2O, whereas electrical discharges accelerate the release of unsaturated hydrocarbons such as acetylene. By employing TG-FTIR, ReaxFF molecular dynamics, and DFT spectral calculations, a normalized infrared spectral library covering typical products was established and combined with the non-negative least squares method to realize quantitative deconvolution of mixed gases. Ultimately, a diagnostic system was constructed based on the concentration ratios of characteristic gases, which can effectively distinguish the failure modes of inner and outer PVC layers as well as different stress types. This provides a feasible approach for early detection of cable faults and supports intelligent maintenance strategies. Full article
(This article belongs to the Special Issue Polymeric Composites for Electrical Insulation Applications)
Show Figures

Figure 1

Back to TopTop