polymers-logo

Journal Browser

Journal Browser

Biopolymers for Wound Management: Translation for Clinical Practice

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 195

Special Issue Editor


E-Mail Website
Guest Editor
School of Nursing, University of Campinas, Campinas 13083-887, Brazil
Interests: hydrogels; polymer technology; nanomaterials; wound healing

Special Issue Information

Dear Colleague,

Biomaterials are being extensively used in regenerative medicine and tissue engineering applications, as these enhance tissue development and repair, and help in angiogenesis. Wound healing is a crucial biological process involving ruptured tissue regeneration after injury to the skin and other soft tissue in humans and animals. The research community is encouraged to share their expertise and expand knowledge by tackling new challenges in this Special Issue.

We welcome works that propose new biopolymer-based composite materials that can surpass the properties and performance of traditional synthetic materials, as well as offering environmental sustainability.

This Special Issue will publish innovative studies related to the use of biopolymer-based composites by focusing the aim of the contributions (article, review, research report, etc.) on their applications for in vitro, in vivo, and human wound healing fields. 

Dr. Maria Helena de Melo Lima
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrogels
  • polymer technology
  • nanomaterials
  • wound healing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

31 pages, 5792 KB  
Article
Development, Characterization, and Biological Evaluation of a Self-Healing Hydrogel Patch Loaded with Ciprofloxacin for Wound Dressings
by Wasan Al-Farhan, Osama H. Abusara, Mohammad Abu-Sini, Suhair Hikmat, Ola Tarawneh, Sameer Al-Kouz and Rania Hamed
Polymers 2025, 17(19), 2686; https://doi.org/10.3390/polym17192686 (registering DOI) - 4 Oct 2025
Abstract
Hydrogels are crosslinked polymer chains that form a three-dimensional network, widely used for wound dressing due to their ability to absorb significant amounts of fluid. This study aimed to develop a hydrogel patch for wound dressing with self-healing properties, particularly for joints and [...] Read more.
Hydrogels are crosslinked polymer chains that form a three-dimensional network, widely used for wound dressing due to their ability to absorb significant amounts of fluid. This study aimed to develop a hydrogel patch for wound dressing with self-healing properties, particularly for joints and stretchable body parts, providing a physical barrier while maintaining an optimal environment for wound healing. Polyvinyl alcohol (PVA) and sodium carboxymethyl cellulose (Na CMC) were crosslinked with borax, which reacts with the active hydroxyl groups in both polymers to form a hydrogel. The patches were loaded with ciprofloxacin HCl (CIP), a broad-spectrum antibiotic used to prevent and treat various types of wound infections. Hydrogels were subjected to rheological, morphological, antimicrobial, self-healing, ex vivo release, swelling, cytotoxicity, wound healing, and stability studies. The hydrogels exhibited shear-thinning, thixotropic, and viscoelastic properties. Microscopic images of the CIP hydrogel patch showed a porous, crosslinked matrix. The antimicrobial activity of the patch revealed antibacterial effectiveness against five types of Gram-positive and Gram-negative bacteria, demonstrating a minimum inhibitory concentration of 0.05 μg/mL against E. coli. The swelling percentage was found to be 337.4 ± 12.7%. The cumulative CIP release percentage reached 103.7 ± 3.7% after 3 h, followed by zero-order release kinetics. The stability studies revealed that the crossover point shifted toward higher frequencies after 3 months of storage at room temperature, suggesting a relaxation in the hydrogel bonds. The cytotoxicity study revealed that the CIP hydrogel patch is non-cytotoxic. Additionally, the in vivo study demonstrated that the CIP hydrogel patch possesses wound-healing ability. Therefore, the CIP PVA/Na CMC/Borax patch could be used in wound dressing. Full article
(This article belongs to the Special Issue Biopolymers for Wound Management: Translation for Clinical Practice)
Show Figures

Figure 1

Back to TopTop