polymers-logo

Journal Browser

Journal Browser

Advances in Lignocellulose: Cellulose, Hemicellulose and Lignin

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Circular and Green Sustainable Polymer Science".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 387

Special Issue Editor


E-Mail
Guest Editor
College of Materials Science and Engineering, Hainan University, Haikou, China
Interests: biomass; lignin; cellulose; natural polymers; nano materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Lignocellulose is extremely common and widespread in nature. Cellulose, hemicellulose, lignin and their derivates play crucial roles across a variety of research areas, including health, biopharmaceuticals, food, cosmetics, chemicals, bioplastics, biotechnology, buildings and fuels, among others. This Special Issue invites the research community, with its expertise, passion and commitment to science, to contribute to expanding the boundaries of knowledge by addressing new challenges in the field of lignocellulose conversion and utilization. In particular, we welcome works that propose new lignocellulose-based composites, functional materials or nanotechnologies.

This Special Issue is devoted to the most recent research on these topics, covering all aspects concerning the structural modification and application of lignocellulose. Both original contributions and comprehensive reviews are welcome.

Dr. Hui Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structural modification
  • structural characterization
  • biomaterials
  • biopharmaceuticals
  • drug delivery
  • bioplastics
  • biosensors
  • flexible and wearable devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 13989 KiB  
Article
Facile Preparation of a Cellulose-Based Thermoresponsive Gel for Rapid Water Harvesting from the Atmosphere
by Xiaoyu Wang, Hui Zhang, Xinxin Liu, Jie Du and Yingguang Xu
Polymers 2025, 17(16), 2253; https://doi.org/10.3390/polym17162253 - 20 Aug 2025
Viewed by 256
Abstract
Atmospheric water harvesting, as an emerging water collection technology, is expected to mitigate water resource crises. Adsorption-based atmospheric water harvesting technology offers distinct advantages, including geographical independence and reduced reliance on ambient humidity levels. Herein, a thermoresponsive gel (PNIPAM/TO-CNF) integrated with lithium chloride [...] Read more.
Atmospheric water harvesting, as an emerging water collection technology, is expected to mitigate water resource crises. Adsorption-based atmospheric water harvesting technology offers distinct advantages, including geographical independence and reduced reliance on ambient humidity levels. Herein, a thermoresponsive gel (PNIPAM/TO-CNF) integrated with lithium chloride was constructed to achieve accelerated moisture sorption and rapid desorption capabilities. In the designated PNIPAM/TO-CNF/LiCl gel, PNIPAM provided a temperature-responsive hydrophilic–hydrophobic transition network; the hydrophilicity and structural strength were enhanced by TO-CNF, the moisture absorption capacity was dramatically elevated by hygroscopic salt LiCl, and pore-forming agent polyethylene glycol created a favorable porous structure. This synergistic design endows the gel with an optimized hydrophilic network, temperature-responsive behavior, and a porous architecture conducive to water vapor transportation, thereby achieving rapid moisture absorption and desorption. Under 60% relative humidity, the gel exhibited a water vapor adsorption capacity of 144% within 1 h, reaching its maximum absorption capacity of 178% after 140 min. The gel exhibited an even more superior desorption performance: when heated to 70 °C, its moisture content rapidly decreased to 16% of its initial weight within 1 h, corresponding to the desorption of 91% of the total absorbed water. A simplified pore-forming methodology that enables the integration of temperature-responsive properties with efficient moisture transfer channels was reported in this paper, providing a viable design pathway for achieving accelerated adsorption–desorption cycles in atmospheric water harvesting. Full article
(This article belongs to the Special Issue Advances in Lignocellulose: Cellulose, Hemicellulose and Lignin)
Show Figures

Graphical abstract

Back to TopTop