Advances in Optical System Design

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: 30 June 2025 | Viewed by 652

Special Issue Editors


E-Mail Website
Guest Editor
Optoelectronic Science and Engineering, Zhejiang University, 139 Third Teaching Building, Yuquan Campus, University, Zhejiang 310063, China
Interests: micro-optics; optical imaging; optical inspection
Institute of Optics and Machinery, University of Chinese Academy of Sciences, 3888 Southeast Lake Road, Changchun, China
Interests: space optical system design; space UV warning technology; hyperspectral load overall technology

E-Mail Website
Guest Editor
Hefei Institute of Materials Science, Chinese Academy of Sciences, 350 Shushan Lake Road, Luyang District, Hefei City, China
Interests: advanced optics; spectral imaging technology

Special Issue Information

Dear Colleagues,

This Special Issue focuses on exploring the latest developments in the field of optical system design. We are committed to sharing and discussing key issues and challenges in various aspects of optical system design, including, but not limited to, optical imaging technology, adaptive optical systems, laser radar, optical communication systems, etc. We invite experts and scholars from around the world to share their research achievements, technological innovations, and practical experience in the field of optical system design. We welcome submissions for theoretical research, experimental research, and engineering applications. Through this Special Issue, we hope to promote communication and cooperation between academia and industry, advance the development of advanced optical system design, and promote the application and progress of optical technology in various fields.

Dr. Jian Bai
Dr. Bo Li
Dr. Lei Yu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aberration theory
  • optical imaging
  • optical optimization algorithm
  • optical simulation and modeling
  • deep learning
  • free-form surface design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 6501 KiB  
Article
Airborne Constant Ground Resolution Imaging Optical System Design
by Zhiqiang Yang, Shizhen Gao, Qianxi Chen, Bohan Wu, Qiang Xu, Lei Gong and Lihong Yang
Photonics 2025, 12(4), 390; https://doi.org/10.3390/photonics12040390 - 16 Apr 2025
Viewed by 178
Abstract
When an unmanned aerial vehicle (UAV) tilts to capture an image of a ground target, variations in object distance may lead to uneven resolution distribution, with the focal length ranging from zero to the full field of view. The field-of-view focal length (FFL), [...] Read more.
When an unmanned aerial vehicle (UAV) tilts to capture an image of a ground target, variations in object distance may lead to uneven resolution distribution, with the focal length ranging from zero to the full field of view. The field-of-view focal length (FFL), which is a function of the field of view, characterizes the optical properties of the system for each viewing angle. The field-of-view focal length (FFL) quantifies the incremental change in image height resulting from marginal rays exiting the optical system, with infinitesimal angular variations at the field boundary. The optical aberration manifests as an effective focal length variation that exhibits field-dependent characteristics. Through systematic calculation and optimization of the field-of-view focal lengths (FFLs) for ground resolution (GR) control, a mid-wave infrared (MWIR) optical system has been successfully designed, featuring a 10° × 8° field of view (FOV) with an F-number of 3. The optical system implements field-adapted focal length adjustment across distinct viewing angles to ensure consistent ground resolution preservation throughout the full field of view. The designed optical system achieves near-diffraction-limited modulation transfer function (MTF) performance across the full field of view, with all dispersion spots consistently confined within the Airy disk at every viewing angle. The optical system demonstrates superior imaging performance with all dispersion spots confined within the Airy disk radius, fully complying with stringent image quality specifications. Featuring a compact structural configuration, the system exhibits optimal suitability for airborne ground-target reconnaissance applications. Full article
(This article belongs to the Special Issue Advances in Optical System Design)
Show Figures

Figure 1

Back to TopTop