Advances in Nanotechnology-Based Drug Delivery Systems, 2nd Edition

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 2750

Special Issue Editor


E-Mail Website
Guest Editor
Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
Interests: polymeric nanoparticles; nanomedicine; pharmaceutical technology; lipid nanoparticles; nanoprecipitation; nanoparticles loading poorly soluble drugs; drug delivery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanotechnology is a scientific branch focused on designing, fabricating, and applying nanostructures and nanomaterials at the nanometer scale. There has been growing interest in using nanotechnologies to produce and investigate carriers for drug delivery. In this sense, nanocarriers (such as liposomes and derivatives, metal nanoparticles, carbon nanoparticles and nanotubes, nanocrystals, polymeric nanospheres, nanocapsules, and micelles) can be used to control the release and delivery of Active Pharmaceutical Ingredients (APIs), enhance the dissolution of poorly soluble APIs, improve their bioavailability, and decrease side effects.

In this Special Issue of Pharmaceutics, original research articles and reviews regarding nanotechnology applications in the pharmaceutical field are welcome. This issue will highlight advances in new technologies for the development of different types of nanocarriers via the use of green techniques and materials. Articles focused on formulation strategies to encapsulate biological macromolecules are particularly encouraged.

I look forward to receiving your contributions.

Dr. Carla Serri
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • nanomedicine
  • nanotechnology
  • formulations
  • green production technologies
  • biological macromolecule nanoencapsulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 5616 KB  
Article
Development and Characterization of EGCG-Loaded TPGS/Poloxamer 407 Micelles with Evaluation of In Vitro Drug Release and In Vivo Pharmacokinetics and Tolerability Observations Following Oral Administration
by Chee Ning Wong, Kai Bin Liew, Yang Mooi Lim, Yik-Ling Chew, Ang-Lim Chua, Shi-Bing Yang and Siew-Keah Lee
Pharmaceutics 2025, 17(11), 1441; https://doi.org/10.3390/pharmaceutics17111441 - 7 Nov 2025
Viewed by 743
Abstract
Background: Epigallocatechin-3-gallate (EGCG), a potent green tea polyphenol, possesses significant therapeutic potential, but its clinical application is limited by poor gastrointestinal stability and low oral bioavailability. To address this, a novel herbal nanomedicine-based delivery system was developed utilizing D-α-tocopheryl polyethylene glycol succinate [...] Read more.
Background: Epigallocatechin-3-gallate (EGCG), a potent green tea polyphenol, possesses significant therapeutic potential, but its clinical application is limited by poor gastrointestinal stability and low oral bioavailability. To address this, a novel herbal nanomedicine-based delivery system was developed utilizing D-α-tocopheryl polyethylene glycol succinate (TPGS) and Poloxamer 407. Objectives: This study aims to develop and characterize EGCG-loaded TPGS/Poloxamer 407 micelles, evaluating their physicochemical properties, storage stability, in vitro drug release profile, in vivo oral bioavailability, and preliminary tolerability observation. Methods: The micelles were prepared using the film hydration method followed by lyophilization. Results: The optimized 2:2 TPGS-to-poloxamer 407 weight ratio yielded EGCG-loaded micelles, displaying a mean particle size of 15.4 nm, a polydispersity index (PDI) of 0.16, a zeta potential of −17.7 mV, an encapsulation efficiency of 82.7%, and a drug loading capacity of 7.6%. The critical micelle concentration (CMC) was determined to be 0.00125% w/v. Transmission electron microscopy (TEM) confirmed the micelles’ uniform spherical morphology. In vitro release studies demonstrated a sustained release profile in both simulated gastric and intestinal fluids. EGCG formulation remained stable for at least six months when stored at 4 °C. No adverse clinical signs were noted during the 28-day tolerability observation. In vivo pharmacokinetic evaluation in mice revealed a significant elevation in oral bioavailability, achieving a 2.27-fold increase in area under the curve (AUC) and a 1.8-fold increase in peak plasma concentration (Cmax) compared to free EGCG. Conclusions: Collectively, these findings underscore the potential of the TPGS/poloxamer 407-based micelle system as a promising oral delivery platform for EGCG, enhancing its stability and pharmacokinetic performance. Full article
(This article belongs to the Special Issue Advances in Nanotechnology-Based Drug Delivery Systems, 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 1912 KB  
Review
Selenium Nanoparticles as Versatile Delivery Tools
by Amir Nasrolahi Shirazi, Rajesh Vadlapatla, Ajoy Koomer, Kyle Yep and Keykavous Parang
Pharmaceutics 2025, 17(12), 1556; https://doi.org/10.3390/pharmaceutics17121556 - 3 Dec 2025
Viewed by 676
Abstract
Selenium nanoparticles (SeNPs) have emerged as promising metal-based nanoparticles for drug delivery due to their unique physicochemical properties, intrinsic bioactivity, and biocompatibility. SeNPs offer a lower toxicity, higher bioavailability, and flexibility to be customized for surface chemistry compared to traditional selenium compounds. Advances [...] Read more.
Selenium nanoparticles (SeNPs) have emerged as promising metal-based nanoparticles for drug delivery due to their unique physicochemical properties, intrinsic bioactivity, and biocompatibility. SeNPs offer a lower toxicity, higher bioavailability, and flexibility to be customized for surface chemistry compared to traditional selenium compounds. Advances in synthetic strategies, including chemical reduction, green biosynthesis, and surface functionalization with polymers, peptides, or ligands, have improved their stability, targeting capability, and circulation time. SeNP-based systems have demonstrated unique anticancer, antimicrobial, and anti-inflammatory activities, as they can function as drug carriers and active therapeutic agents. The surface of SeNPs has been functionalized with ligands such as Arginylglycylaspartic acid (RGD) peptides, hyaluronic acid, or chitosan to enhance their receptor-mediated targeting abilities in tumor tissues. In addition, SeNPs have shown a synergistic effect in the presence of drugs such as doxorubicin and paclitaxel. Even though SeNPs have demonstrated significant potential in pre-clinical investigations, their use in clinical studies has not been expanded due to several limiting challenges, including large-scale production, long-term safety, pharmacokinetic properties, and regulations required for FDA approval. Continued research into optimizing formulation strategies and expanding in vivo validation will be critical to translating SeNP-based drug delivery systems into clinical applications. In this review, we focus on the methods for synthesizing SeNPs, their physicochemical properties, the structure of ligands attached to SeNPs for drug delivery applications, and the specific biological targets of functionalized SeNPs. Full article
(This article belongs to the Special Issue Advances in Nanotechnology-Based Drug Delivery Systems, 2nd Edition)
Show Figures

Figure 1

26 pages, 1975 KB  
Review
Green-Synthesized Nanomaterials from Edible and Medicinal Mushrooms: A Sustainable Strategy Against Antimicrobial Resistance
by Gréta Törős, Hassan El-Ramady, Duyen H. H. Nguyen, Walaa Alibrahem, Nihad Kharrat Helu, Reina Atieh, Arjun Muthu, Szintia Jevcsák, Dávid Semsey, Neama Abdalla, Tamer Elsakhawy, Alexandra Florence Tóth, Péter Tamás Nagy and József Prokisch
Pharmaceutics 2025, 17(11), 1388; https://doi.org/10.3390/pharmaceutics17111388 - 27 Oct 2025
Viewed by 1091
Abstract
Antimicrobial resistance (AMR) poses an escalating global health crisis, projected to cause up to 10 million deaths annually by 2050. Conventional antibiotics are increasingly ineffective due to microbial adaptation, overuse, and disruption of gut microbiota. Nanotechnology offers promising alternatives, but traditional nanoparticle synthesis [...] Read more.
Antimicrobial resistance (AMR) poses an escalating global health crisis, projected to cause up to 10 million deaths annually by 2050. Conventional antibiotics are increasingly ineffective due to microbial adaptation, overuse, and disruption of gut microbiota. Nanotechnology offers promising alternatives, but traditional nanoparticle synthesis often relies on toxic chemicals and energy-intensive processes. This review explores mushroom-derived nanoparticles (myco-NPs) as sustainable, eco-friendly antimicrobials. Edible and medicinal mushrooms contain bioactive compounds, including polysaccharides, flavonoids, and proteins, that act as reducing and stabilizing agents in nanoparticle biosynthesis. Myco-NPs exhibit antimicrobial activity through membrane disruption, oxidative stress, immune modulation, and biofilm inhibition, while also demonstrating synergistic effects with antibiotics and potential roles in regulating the gut microbiota. Recent advances highlight their potential applications in medicine, food safety, and environmental protection. However, challenges remain regarding standardization, safety evaluation, and large-scale production. We emphasize interdisciplinary collaboration as essential to translating mushroom-based nanotechnology into effective clinical and industrial solutions. Full article
(This article belongs to the Special Issue Advances in Nanotechnology-Based Drug Delivery Systems, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop