Selenium Nanoparticles as Versatile Delivery Tools
Abstract
1. Introduction
1.1. The Metal Nanoparticles in Drug Delivery
1.2. Selenium
1.3. Selenium Nanoparticles
1.3.1. Ligands
Polymers
Peptides
Small Molecule Ligands
Proteins and Antibodies (for Receptor-Mediated Targeting)
Other Functional Coatings
1.4. Key Physicochemical Properties of SeNP-Based Drug Delivery Systems
1.4.1. Particle Size and Morphology
1.4.2. Surface Functionalization and Encapsulation
1.4.3. Cargo Loading
Common Loading Strategies and Their Implications
2. Biological Properties
2.1. SeNPs in Clinical Trials
2.2. Mechanism of Cellular Drug Delivery
3. Challenges and Limitations
3.1. Stability in Biological Environments
3.2. Immunogenicity and Toxicity Concerns
3.3. Scalability and Reproducibility
3.4. Regulatory and Translational Barriers
4. Future Perspectives
4.1. Toward Precision and Personalized Nanomedicine
4.2. Engineering Smart and Hybrid Selenium Systems
4.3. Integrating Regulatory, Safety, and Clinical Frameworks
4.4. Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AgNPs | Silver nanoparticles |
| SeNPs | Selenium nanoparticles |
| PEG | Polyethylene glycol |
References
- Shirazi, A.N.; Vadlapatla, R.; Koomer, A.; Nguyen, A.; Khoury, V.; Parang, K. Peptide-Based Inorganic Nanoparticles as Efficient Intracellular Delivery Systems. Pharmaceutics 2025, 17, 1123. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar] [PubMed]
- Pasparakis, G. Recent Developments in the Use of Gold and Silver Nanoparticles in Biomedicine. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1817. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, S.; Iraqui, S.; Ojha, R.K.; Sharma, N.; Marlinda, A.R. Therapeutic Potential and Toxicological Challenges of Metal Nanoparticles in Drug Delivery: A Comprehensive Review. Nanomedicine 2025, 70, 102862. [Google Scholar] [CrossRef]
- Dykman, L.A.; Khlebtsov, N.G. Gold Nanoparticles in Biomedical Applications: Recent Advances and Perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282. [Google Scholar] [CrossRef]
- Liu, D.; Lin, B.; Shao, W.; Zhu, Y. Targeted Cancer Therapy Using Peptide-Functionalized Nanoformulations: Recent Advances and Future Perspectives. Acta Pharm. Sin. B 2021, 11, 2265–2285. [Google Scholar]
- Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Genc, S.; Taghizadehghalehjoughi, A.; Yeni, Y.; Jafarizad, A.; Hacimuftuoglu, A.; Nikitovic, D.; Docea, A.O.; Mezhuev, Y.; Tsatsakis, A. Fe3O4 Nanoparticles in Combination with 5-FU Exert Antitumor Effects Superior to Those of the Active Drug in a Colon Cancer Cell Model. Pharmaceutics 2023, 15, 245. [Google Scholar] [CrossRef]
- Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective Toxicity of ZnO Nanoparticles toward Gram-Positive Bacteria and Cancer Cells by Apoptosis through Lipid Peroxidation. Nanomedicine 2011, 7, 184–192. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Zhang, M.; Wang, J.; Wu, Z.; Li, L. Gadolinium-Based Nanoparticles for Theranostic Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 4673–4691. [Google Scholar]
- Chen, G.; Yang, F.; Fan, S.; Jin, H.; Liao, K.; Li, X.; Liu, G.B.; Liang, J.; Zhang, J.; Xu, J.F.; et al. Immunomodulatory Roles of Selenium Nanoparticles: Novel Arts for Potential Immunotherapy Strategy Development. Front. Immunol. 2022, 13, 956181. [Google Scholar] [CrossRef]
- Huang, Y.; He, L.; Liu, W.; Fan, C.; Zheng, W.; Wong, Y.S.; Chen, T. Selective Cellular Uptake and Induction of Apoptosis of Cancer-Targeted Selenium Nanoparticles. Biomaterials 2013, 34, 7106–7116. [Google Scholar] [CrossRef]
- Gong, G.; Fu, B.; Ying, C.; Zhu, Z.; He, X.; Li, Y.; Shen, Z.; Xuan, Q.; Huang, Y.; Lin, Y.; et al. Targeted Delivery of Paclitaxel by Functionalized Selenium Nanoparticles for Anticancer Therapy through ROS-Mediated Signaling Pathways. RSC Adv. 2018, 8, 39957–39966. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, A.N.; Sajid, M.I.; Mandal, D.; Stickley, D.; Nagasawa, S.; Long, J.; Lohan, S.; Parang, K.; Tiwari, R.K. Cyclic Peptide-Gadolinium Nanocomplexes as siRNA Delivery Tools. Pharmaceuticals 2021, 14, 1064. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, A.N.; Park, S.E.; Rad, S.; Baloyan, L.; Mandal, D.; Sajid, M.I.; Hall, R.; Lohan, S.; Zoghebi, K.; Parang, K.; et al. Cyclic Peptide-Gadolinium Nanoparticles for Enhanced Intracellular Delivery. Pharmaceutics 2020, 12, 792. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, A.N.; Paquin, K.L.; Howlett, N.G.; Mandal, D.; Parang, K. Cyclic Peptide-Capped Gold Nanoparticles for Enhanced siRNA Delivery. Molecules 2014, 19, 13319–13331. [Google Scholar] [CrossRef]
- Nasrolahi Shirazi, A.; Tiwari, R.K.; Oh, D.; Sullivan, B.; McCaffrey, K.; Mandal, D.; Parang, K. Surface Decorated Gold Nanoparticles by Linear and Cyclic Peptides as Molecular Transporters. Mol. Pharm. 2013, 10, 3137–3146. [Google Scholar] [CrossRef]
- Nasrolahi Shirazi, A.; Mandal, D.; Tiwari, R.K.; Guo, L.; Lu, W.; Parang, K. Cyclic Peptide-Capped Gold Nanoparticles as Drug Delivery Systems. Mol. Pharm. 2013, 10, 500–508. [Google Scholar] [CrossRef]
- Stojsavljević, A.; Rovčanin, B. Impact of Essential and Toxic Trace Metals on Thyroid Health and Cancer: A Review. Expo. Health 2021, 13, 613–627. [Google Scholar] [CrossRef]
- Ferreira, R.L.U.; Sena-Evangelista, K.C.M.; de Azevedo, E.P.; Pinheiro, F.I.; Cobucci, R.N.; Pedrosa, L.F.C.; Minich, W.B. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship with Diseases. Front. Nutr. 2021, 8, 685317. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Lee, J.; Wu, C.; Guo, X.; Lee, B.J.; Chun, J.S.; Kim, J.H. The Role of Selenium Metabolism and Selenoproteins in Cartilage Homeostasis and Arthropathies. Exp. Mol. Med. 2020, 52, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.M.; Yang, Y.; Liu, S.; Yang, Y.; Liu, Z. Clinical Efficacy of Selenium Supplementation in Patients with Hashimoto Thyroiditis: A Systematic Review and Meta-Analysis. Medicine 2025, 104, e44043. [Google Scholar] [CrossRef] [PubMed]
- Tinggi, U. Selenium: Its Role as Antioxidant in Human Health. Environ. Health Prev. Med. 2008, 13, 102–108. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, M.; Tang, S.; Li, M.; Wu, R.; Wan, S.; Chen, L.; Wei, X.; Feng, S. Effects and Impact of Selenium on Human Health: A Review. Molecules 2025, 30, 50. [Google Scholar] [CrossRef]
- Di Bella, S.; Grilli, E.; Cataldo, M.A.; Petrosillo, N. Selenium Deficiency and HIV Infection. Infect. Dis. Rep. 2010, 2, e18. [Google Scholar] [CrossRef]
- Kudva, A.K.; Shay, A.E.; Prabhu, K.S. Selenium and Inflammatory Bowel Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G71–G77. [Google Scholar] [CrossRef]
- Liang, D.; Liu, C.; Zhang, X. Association between Dietary Selenium Intake and the Risk of Cardiovascular Disease in US Adults: A Population-Based Study. Sci. Rep. 2025, 15, 13427. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Gong, P.; Yao, W.; Ba, Q.; Wang, H. Review on the Health-Promoting Effect of Adequate Selenium Status. Front. Nutr. 2023, 10, 1136458. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef]
- Perri, G.; Mathers, J.C.; Martin-Ruiz, C.; Parker, C.; Demircan, K.; Chillon, T.S.; Schomburg, L.; Robinson, L.; Stevenson, E.J.; Shannon, O.M.; et al. The Association between Selenium Status and Global and Attention-Specific Cognition in Very Old Adults in the Newcastle 85+ Study: Cross-Sectional and Longitudinal Analyses. Am. J. Clin. Nutr. 2024, 120, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Bano, I.; Hassan, M.F.; Kieliszek, M. A Comprehensive Review of Selenium as a Key Regulator in Thyroid Health. Biol. Trace Elem. Res. 2025, 203, 6466–6480. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Xu, S.; Zhang, H.; Cao, W.; Wang, K.; Chen, G.; Di, H.; Cao, M.; Liu, C. Selenium Supplementation for Autoimmune Thyroiditis: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2014, 2014, 904573. [Google Scholar] [CrossRef] [PubMed]
- Bøgelund Larsen, C.; Winther, K.H.; Cramon, P.K.; Rasmussen, Å.K.; Feldt-Rasmussen, U.; Knudsen, N.J.; Bjorner, J.B.; Schomburg, L.; Demircan, K.; Chillon, T.S.; et al. Selenium Supplementation and Placebo Are Equally Effective in Improving Quality of Life in Patients with Hypothyroidism. Eur. Thyroid J. 2024, 13, e230175. [Google Scholar] [CrossRef]
- Cui, Z.; Xie, R.; Lu, X.; Schomburg, L.; Brenner, H.; Schöttker, B. Associations of Selenium Status with All-Cause and Cause-Specific Mortality: A Systematic Review and Meta-Analysis of Cohort Studies. Redox Biol. 2025, 85, 103755. [Google Scholar] [CrossRef]
- Office of Dietary Supplements, National Institutes of Health. Selenium: Fact Sheet for Health Professionals; U.S. Department of Health and Human Services: Washington, DC, USA, 2024.
- Ehudin, M.A.; Golla, U.; Trivedi, D.; Potlakayala, S.D.; Rudrabhatla, S.V.; Desai, D.; Dovat, S.; Claxton, D.; Sharma, A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int. J. Mol. Sci. 2022, 23, 7972. [Google Scholar] [CrossRef]
- Wang, P.; Chen, B.; Huang, Y.; Li, J.; Cao, D.; Chen, Z.; Li, J.; Ran, B.; Yang, J.; Wang, R.; et al. Selenium Intake and Multiple Health-Related Outcomes: An Umbrella Review of Meta-Analyses. Front. Nutr. 2023, 10, 1263853. [Google Scholar] [CrossRef]
- Poormoosavi, S.M.; Behmanesh, M.A.; Varzi, H.N.; Mansouri, S.; Janati, S. The Effect of Follicular Fluid Selenium Concentration on Oocyte Maturation in Women with Polycystic Ovary Syndrome Undergoing In Vitro Fertilization/Intracytoplasmic Sperm Injection: A Cross-Sectional Study. Int. J. Reprod. Biomed. 2021, 19, 689–698. [Google Scholar] [CrossRef]
- Alexander, J.; Olsen, A.-K. Selenium: A Scoping Review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 28, 67. [Google Scholar] [CrossRef]
- Cyna, W.; Wojciechowska, A.; Szybiak-Skora, W.; Lacka, K. The Impact of Environmental Factors on the Development of Autoimmune Thyroiditis. Biomedicines 2024, 12, 1788. [Google Scholar] [CrossRef]
- Hosnedlová, B.; Kepińska, M.; Skalicková, S.; Fernández, C.; Ruttkay Nedecký, B.; Peng, Q.; Baron, M.; Melcová, M.; Opatřilová, R.; Žídková, J.; et al. Nano selenium and its nanomedicine applications: A critical review. Int. J. Nanomed. 2018, 13, 2107–2128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Roh, Y.J.; Han, S.J.; Park, I.; Lee, H.M.; Ok, Y.S.; Lee, B.C.; Lee, S.R. Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants 2020, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, W.; Lin, F.; Liu, W.; Gu, R. Epigallocatechin 3 gallate Selenium Nanoparticles for Neuroprotection by Scavenging Reactive Oxygen Species and Reducing Inflammation. Front. Bioeng. Biotechnol. 2022, 10, 989602. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Xiao, R.; Afolabi, M.; Bomma, M.; Xiao, Z. Evaluation of Antibacterial Activity of Selenium Nanoparticles against Food Borne Pathogens. Microorganisms 2023, 11, 1519. [Google Scholar] [CrossRef]
- Wadhwani, S.A.; Gorain, M.; Banerjee, P.; Shedbalkar, U.U.; Singh, R.; Kundu, G.C.; Chopade, B.A. Green Synthesis of Selenium Nanoparticles Using Acinetobacter sp. SW30: Optimization, Characterization and Its Anticancer Activity in Breast Cancer Cells. Int. J. Nanomed. 2017, 12, 6841–6855. [Google Scholar] [CrossRef]
- Yang, F.; Huang, J.; Liu, H.; Lin, W.; Li, X.; Zhu, X.; Chen, T. Lentinan-functionalized selenium nanosystems with high permeability infiltrate solid tumors by enhancing transcellular transport. Nanoscale 2020, 12, 14494–14503. [Google Scholar] [CrossRef]
- Sarin, L.; Sanchez, V.C.; Yan, A.; Kane, A.B.; Hurt, R.H. Selenium-Carbon Bifunctional Nanoparticles for the Treatment of Malignant Mesothelioma. Adv. Mater. 2010, 22, 5207–5211. [Google Scholar] [CrossRef]
- Vekariya, K.; Kaur, J.; Tikoo, K. Signaling Imparts Chemotherapeutic Selectivity to Selenium Nanoparticles in Breast Cancer. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 1125–1132. [Google Scholar] [CrossRef]
- Al-Darwesh, M.Y.; Manai, M.; Chebbi, H.; Klein, A. Green Synthesis of Chitosan-Coated Selenium Nanoparticles for Paclitaxel Delivery. Nanomaterials 2025, 15, 1276. [Google Scholar] [CrossRef]
- Çetin, D.P.; Seçme, M.; İlhan, H.; Sağlam, N. Alginate- and chitosan-coated ferulic acid-loaded selenium nanoparticles: Synthesis, characterization, and anticancer activity against MDA-MB-231 breast cancer cells. Med. Oncol. 2025, 42, 198. [Google Scholar] [CrossRef]
- Dana, P.; Pimpha, N.; Chaipuang, A.; Thumrongsiri, N.; Tanyapanyachon, P.; Taweechaipaisankul, A.; Chonniyom, W.; Watcharadulyarat, N.; Sathornsumetee, S.; Saengkrit, N. Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer Therapy. Nanomaterials 2022, 12, 2606. [Google Scholar] [CrossRef] [PubMed]
- Mary, T.A.; Shanthi, K.; Vimala, K.; Soundarapandian, K. PEG Functionalized Selenium Nanoparticles as a Carrier of Crocin to Achieve Anticancer Synergism. RSC Adv. 2016, 6, 22936–22949. [Google Scholar] [CrossRef]
- Zhu, L.; Mi, P.; Yu, Z.-L.; Zhang, Q.-H.; Liao, L.-X.; Wei, B.-M.; Wang, H.-B. Dual-Modified Selenium Nanoparticles for the Synergistic Treatment of Breast Cancer. Mater. Today Chem. 2025, 43, 102451. [Google Scholar] [CrossRef]
- Al-Shreefy, H.H.; Al-Wasiti, E.; Al-Awady, M.J. Investigation of Encapsulated Selenium Nanoparticles with PLGA Polymers Against MCF-7 and HBL Cell Lines. Nano Biomed. Eng. 2023, 15, 105–117. [Google Scholar] [CrossRef]
- Yu, B.; Zhou, Y.; Song, M.; Xue, Y.; Cai, N.; Luo, X.; Long, S.; Zhang, H. Synthesis of Selenium Nanoparticles with Mesoporous Silica Drug-Carrier Shell for Programmed Responsive Tumor Targeted Synergistic Therapy. RSC Adv. 2016, 6, 2171–2175. [Google Scholar] [CrossRef]
- Nasrolahi Shirazi, A.; Tiwari, R.K.; Oh, D.; Sullivan, B.; Kumar, A.; Beni, Y.A.; Parang, K. Cyclic Peptide-Selenium Nanoparticles as Drug Transporters. Mol. Pharm. 2014, 11, 3631–3641. [Google Scholar] [CrossRef]
- Suryakanta, U.; Panigrahi, B.; Das, S.; Mandal, D. Peptide-Functionalized Selenium Nanoparticle-Based Effective Delivery System for Src-Targeting siRNA in Triple-Negative Breast Cancer Cells. Appl. Bio Mater. 2025, 8, 9379–9392. [Google Scholar] [CrossRef]
- Fu, X.; Yang, Y.; Li, X.; Lai, H.; Huang, Y.; He, L.; Zheng, W.; Chen, T. RGD Peptide-Conjugated Selenium Nanoparticles: Antiangiogenesis by Suppressing VEGF–VEGFR2–ERK/AKT Pathway. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1627–1639. [Google Scholar] [CrossRef]
- Shi, H.; Wang, B.; Shi, Z.; Ma, H.; Li, Y.; Liu, Y.; Zhao, Y.; Xia, N.; Wu, C.; Gao, Y. Paclitaxel–Ang-2-Functionalized Bionic Mesoporous Selenium Nanoparticles for Targeted Therapy of Glioma. Pharmacol. Res. 2025, 216, 107783. [Google Scholar] [CrossRef]
- Davarani Asl, F.; Mohammadi Arvejeh, P.; Rezaee, M.; Saffari--Chaleshtori, J.; Deris, F.; Satari, A.; Asgharzadeh, S.; Khosravian, P. Folic Acid-Targeted Selenium–Curcumin Nanoparticles to Enhance Apoptosis in Breast Cancer Cells. Chem. Biodivers. 2025, 22, e00183. [Google Scholar] [CrossRef]
- Zou, J.; Su, S.; Chen, Z.; Liang, F.; Zeng, Y.; Cen, W.; Zhang, X.; Xia, Y.; Huang, D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3456–3464. [Google Scholar] [CrossRef] [PubMed]
- Nie, T.; Wu, H.; Wong, K.-H.; Chen, T. Facile Synthesis of Highly Uniform Selenium Nanoparticles Using Glucose as the Reductant and Surface Decorator to Induce Cancer Cell Apoptosis. J. Mater. Chem. B 2016, 4, 2351–2358. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, X. Simple Bioconjugate Chemistry Serves Great Clinical Advances: Albumin as a Versatile Platform for Diagnosis and Precision Therapy. Chem. Soc. Rev. 2016, 45, 1432–1456. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Huang, P.; Wu, Y.; Liu, T.; Shao, N.; Zhao, L.; Hu, X.; Chang, J.; Peng, Y.; Qu, S. Engineered Selenium/Human Serum Albumin Nanoparticles for Efficient Targeted Treatment of Parkinson’s Disease via Oral Gavage. ACS Nano 2023, 17, 19961–19980. [Google Scholar] [CrossRef]
- Du, J.; Sun, J.; Liu, X.; Shi, H.; Wu, C.; Liu, Y.; Qiu, Y.; Gao, Y. Hollow Mesoporous Selenium Nanoparticles Loaded with Pyrotinib and Coated with Trastuzumab-Functionalized Albumin for Targeted Therapy of HER2-Positive Breast Cancer. ACS Appl. Nano Mater. 2025, 8, 121–134. [Google Scholar] [CrossRef]
- Mekky, A.E.; Abdo, A.M.; Haggag, M.I.; Elhaw, M.H.; Kadry, M.M.; Ghanem, S.M.; Salama, M.M.; Soliman, A.M.; Mahmoud, N.N. Biosynthesis of Selenium Nanoparticles from Dahlia pinnata Tuberous Roots with Antibacterial, Antidiabetic, and Erythrocyte Membrane Protective Activities. Sci. Rep. 2025, 15, 27177. [Google Scholar] [CrossRef]
- Soliman, M.K.Y.; Amin, M.A.; Nowwar, A.I.; Hendy, M.H.; Salem, S.S. Green Synthesis of Selenium Nanoparticles from Cassia javanica Flowers Extract and Their Medical and Agricultural Applications. Sci. Rep. 2024, 14, 26775. [Google Scholar] [CrossRef]
- Sarkar, J.; Mridha, D.; Davoodbasha, M.A.; Banerjee, J.; Chanda, S.; Ray, K.; Roychowdhury, T.; Acharya, K.; Sarkar, J. A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications. Biol. Trace Elem. Res. 2023, 201, 5000–5036. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J. Nanostruct. Chem. 2022, 12, 467–480. [Google Scholar] [CrossRef]
- Sampath, S.; Sunderam, V.; Manjusha, M.; Dlamini, Z.; Lawrance, A.V. Selenium Nanoparticles: A Comprehensive Examination of Synthesis Techniques and Their Diverse Applications in Medical Research and Toxicology Studies. Molecules 2024, 29, 801. [Google Scholar] [CrossRef]
- Gulbay, G.; Secme, M.; Ilhan, H. Exploring the Potential of Thymoquinone-Stabilized Selenium Nanoparticles: In HEC1B Endometrial Cancer Cells Revealing Enhanced Anticancer Efficacy. ACS Omega 2023, 8, 39822–39829. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, X.; Mu, J.; Ho, C.-T.; Su, J.; Zhang, Y.; Lin, X.; Chen, Z.; Li, B.; Xie, Y. Preparation, Physicochemical Characterization, and Anti-proliferation of Selenium Nanoparticles Stabilized by Polyporus umbellatus Polysaccharide. Int. J. Biol. Macromol. 2020, 152, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, X.; Wong, Y.-S.; Zheng, W.; Zhang, Y.; Cao, W.; Chen, T. Selenium Nanoparticles as a Carrier of 5-Fluorouracil to Achieve Anticancer Synergism. ACS Nano 2012, 6, 6578–6591. [Google Scholar] [CrossRef] [PubMed]
- Ansari, J.A.; Malik, J.A.; Ahmed, S.; Manzoor, M.; Ahemad, N.; Anwar, S. Recent Advances in the Therapeutic Applications of Selenium Nanoparticles. Mol. Biol. Rep. 2024, 51, 688. [Google Scholar] [CrossRef]
- Zambonino, M.C.; Quizhpe, E.M.; Mouheb, L.; Rahman, A.; Agathos, S.N.; Dahoumane, S.A. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. Nanomaterials 2023, 13, 424. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ritter, C.A.; von Woedtke, T.; Bekeschus, S.; Wende, K. Folate Receptor-Mediated Transporters in Cancer Therapy and Diagnosis. Chem. Sci. 2024, 15, 1966–2006. [Google Scholar] [CrossRef]
- Fernández, M.; Javaid, F.; Chudasama, V. Advances in Targeting the Folate Receptor in the Treatment/Imaging of Cancers. Chem. Sci. 2018, 9, 790–810. [Google Scholar] [CrossRef]
- Li, J.; Sun, Q.; Sun, L.; Fu, X.; Deng, G.; Li, Z. Fabrication of pH-Responsive Co-Delivery System for Nano Selenium and Doxorubicin with PEGylated Chitosan: Effect of PEGylation. J. Drug Deliv. Sci. Technol. 2023, 86, 104706. [Google Scholar] [CrossRef]
- Cinar-Acar, B. Size reduction of selenium nanoparticles synthesized from yeast beta glucan using cold atmospheric plasma. Sci. Rep. 2025, 15, 25875. [Google Scholar] [CrossRef]
- Luesakul, U.; Komenek, S.; Puthong, S.; Muangsin, N. Shape-Controlled Synthesis of Cubic-Like Selenium Nanoparticles via the Self-Assembly Method. Carbohydr. Polym. 2016, 153, 435–444. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Xia, H.; Wang, H.; Zhu, B. Multifunctional Selenium Nanoparticles as Carriers of HSP70 siRNA to Induce Apoptosis of HepG2 Cells. Int. J. Nanomed. 2016, 11, 3065–3076. [Google Scholar]
- Xia, Y.; Tang, G.; Wang, C.; Zhong, J.; Chen, Y.; Hua, L.; Zhu, B. Functionalized Selenium Nanoparticles for Targeted siRNA Delivery Silence Derlin1 and Promote Antitumor Efficacy against Cervical Cancer. Drug Deliv. 2019, 27, 15–25. [Google Scholar] [CrossRef]
- Waqar, M.A. A Comprehensive Review on Recent Advancements in Drug Delivery via Selenium Nanoparticles. J. Drug Target. 2024, 33, 157–170. [Google Scholar] [CrossRef]
- Au, A.; Mojadadi, A.; Shao, J.-Y.; Ahmad, G.; Witting, P.K. Physiological Benefits of Novel Selenium Delivery via Nanoparticles. Int. J. Mol. Sci. 2023, 24, 6068. [Google Scholar] [CrossRef]
- He, L.; Javid Anbardan, Z.; Habibovic, P.; van Rijt, S. Doxorubicin- and Selenium-Incorporated Mesoporous Silica Nanoparticles as a Combination Therapy for Osteosarcoma. ACS Appl. Nano Mater. 2024, 7, 25400–25411. [Google Scholar] [CrossRef] [PubMed]
- Kipper, A.I.; Titova, A.V.; Borovikova, L.N.; Pisarev, O.A. Morphological Characteristics of Selenium-Polyethylene Glycol Nanocomposites. Russ. J. Phys. Chem. A 2015, 89, 1625–1627. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Z.; Liu, B.; Xue, J.; Liu, F.; Tang, T.; Liu, W.; Feng, F.; Qu, W. Strategies for the Design of Nanoparticles: Starting with Long-Circulating Nanoparticles, from Lab to Clinic. Biomater. Sci. 2021, 9, 3621–3637. [Google Scholar] [CrossRef] [PubMed]
- Valueva, S.V.; Kipper, A.I. Morphology and Thermodynamics of Selenium-Containing Nanosystems: The Effect of Polymer Stabilizers. Russ. J. Phys. Chem. A 2017, 91, 609–612. [Google Scholar] [CrossRef]
- Akmal, T.; Herdiana, Y.; Mohammed, A.F.A.; Mahmoud, S.A.; Elamin, K.M.; Wilar, G.; Wathoni, N. Chitosan-Functionalized Selenium Nanoparticles for Targeted Cancer Therapy: Advances in Synthesis, Stability, and Tumor-Specific Delivery. OpenNano 2025, 26, 100263. [Google Scholar] [CrossRef]
- Galarreta-Rodriguez, I.; Etxebeste-Mitxeltorena, M.; Moreno, E.; Plano, D.; Sanmartín, C.; Megahed, S.; Feliu, N.; Parak, W.J.; Garaio, E.; Gil de Muro, I.; et al. Preparation of Selenium-Based Drug-Modified Polymeric Ligand-Functionalised Fe3O4 Nanoparticles as Multimodal Drug Carrier and Magnetic Hyperthermia Inductor. Pharmaceuticals 2023, 16, 949. [Google Scholar] [CrossRef]
- Chen, W.; Cheng, H.; Xia, W. Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants 2022, 11, 1965. [Google Scholar] [CrossRef] [PubMed]
- Asadalizadeh, M.; Ghahremani, H.; Ghanbarikondori, P.; Asadalizadeh, H.; Rahmani, P.; Rostamian Motlagh, F. Improved Antitumor Efficacy of Liposome-Encapsulated Selenium Nanoparticles. Asian Pac. J. Cancer Biol. 2025, 10, 323–331. [Google Scholar]
- Selmani, A.; Seibert, E.; Tetyczka, C.; Kuehnelt, D.; Vidakovic, I.; Kornmueller, K.; Absenger-Novak, M.; Radatović, B.; Vinković Vrček, I.; Leitinger, G.; et al. Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles. Pharmaceutics 2022, 14, 803. [Google Scholar] [CrossRef] [PubMed]
- Herdiana, Y.; Febrina, E.; Nurhasanah, S.; Gozali, D.; Elamin, K.M.; Wathoni, N. Drug Loading in Chitosan-Based Nanoparticles. Pharmaceutics 2024, 16, 1043. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, B. Leveraging Electrostatic Interactions for Drug Delivery to the Joint. Bioelectricity 2020, 2, 82–100. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Alzahrani, K.K.; Fahmy, N.M.; Almutairi, H.H.; Almansour, Z.H.; Alam, M.W. Colistin-Conjugated Selenium Nanoparticles: A Dual-Action Strategy Against Drug-Resistant Infections and Cancer. Pharmaceutics 2025, 17, 556. [Google Scholar] [CrossRef]
- Asadpour, L.; Mehrbakhsh Bandari, M.A.; Sojoudi Masouleh, R. Amikacin-Loaded Selenium Nanoparticles Improved Antibacterial and Antibiofilm Activity of Amikacin Against Bovine Mastitis-Causing Staphylococcus aureus. Heliyon 2025, 11, 41103. [Google Scholar] [CrossRef]
- Rezaeimanesh, N.; Rafiee, P.; Saeedi, R.; Khosravian, P.; Sahraian, M.A.; Eskandarieh, S.; Moghadasi, A.N.; Jahromi, S.R. The effect of crocin-selenium nanoparticles on the cognition and oxidative stress markers of multiple sclerosis patients: A randomized triple-blinded placebo-controlled clinical trial. Biometals 2024, 37, 305–319. [Google Scholar] [CrossRef]
- Noormohammadi, M.; Etesam, F.; Amini, A.; Dehkordi, P.K.; Mohammadzadeh, M.; Shidfar, F. Impact of Nano-Selenium Supplementation on the JAK/STAT Signaling Pathway in Major Depressive Disorder: A Triple-Blind, Randomized Controlled Trial. BMC Psychiatry 2025, 25, 785. [Google Scholar] [CrossRef]
- Noormohammadi, M.; Etesam, F.; Amini, A.; Khosravian Dehkordi, P.; Mohammadzadeh, M.; Shidfar, F. Impact of Nano-Selenium Supplementation Add-On Sertraline on Depressive Symptoms and Oxidative Stress in Patients with Major Depressive Disorder: A Triple-Blind Randomized Controlled Trial. Biometals 2025. [Google Scholar] [CrossRef]
- Conner, S.D.; Schmid, S.L. Regulated Portals of Entry into the Cell. Nature 2003, 422, 37–44. [Google Scholar] [CrossRef]
- Chen, C.-L.; Hou, W.H.; Liu, I.H.; Hsiao, G.; Huang, S.S.; Huang, J.S. Inhibitors of Clathrin-Dependent Endocytosis Enhance TGF-β Signaling and Responses. J. Cell Sci. 2009, 122, 1863–1871. [Google Scholar] [CrossRef]
- Hussain, K.M.; Leong, K.L.; Ng, M.M.; Chu, J.J. The Essential Role of Clathrin-Mediated Endocytosis in the Infectious Entry of Human Enterovirus 71. J. Biol. Chem. 2011, 286, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.; Nasrolahi Shirazi, A.; Northup, K.; Sullivan, B.; Tiwari, R.K.; Bisoffi, M.; Parang, K. Enhanced Cellular Uptake of Short Polyarginine Peptides through Fatty Acylation and Cyclization. Mol. Pharm. 2014, 11, 2845–2854. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wu, X.; Li, C.; Zhou, B.; Chen, X.; Chen, T.; Yang, F. Targeting Selenium Nanoparticles Combined with Baicalin to Treat HBV-Infected Liver Cancer. RSC Adv. 2017, 7, 8178–8185. [Google Scholar] [CrossRef]
- Bidkar, A.P.; Sanpui, P.; Ghosh, S.S. Combination Therapy with MAPK-Pathway-Specific Inhibitor and Folic-Acid-Receptor-Targeted Selenium Nanoparticles Induces Synergistic Antiproliferative Response in BRAF Mutant Cancer Cells. ACS Biomater. Sci. Eng. 2019, 5, 2222–2234. [Google Scholar] [CrossRef]
- Naidoo, S.; Daniels, A.; Habib, S.; Singh, M. Poly-L-Lysine-Lactobionic Acid-Capped Selenium Nanoparticles for Liver-Targeted Gene Delivery. Int. J. Mol. Sci. 2022, 23, 1492. [Google Scholar] [CrossRef]
- Xia, Y.; Zhong, J.; Zhao, M.; Tang, Y.; Han, N.; Hua, L.; Xu, T.; Wang, C.; Zhu, B. Galactose-Modified Selenium Nanoparticles for Targeted Delivery of Doxorubicin to Hepatocellular Carcinoma. Drug Deliv. 2019, 26, 1–11. [Google Scholar] [CrossRef]
- Jiang, W.T.; Fu, Y.T.; Yang, F.; Yang, Y.F.; Liu, T.; Zheng, W.J.; Zeng, L.L.; Chen, T.F. Gracilaria lemaneiformis Polysaccharide as Integrin-Targeting Surface Decorator of Selenium Nanoparticles to Achieve Enhanced Anticancer Efficacy. ACS Appl. Mater. Interfaces 2014, 6, 13738–13748. [Google Scholar] [CrossRef]
- Liu, H.J.; Qin, Y.; Zhao, Z.H.; Zhang, Y.; Yang, J.H.; Zhai, D.H.; Cui, F.; Luo, C.; Lu, M.X.; Liu, P.P.; et al. Lentinan-Functionalized Selenium Nanoparticles Target Tumor Cell Mitochondria via TLR4/TRAF3/MFN1 Pathway. Theranostics 2020, 10, 9083–9099. [Google Scholar] [CrossRef]
- Pi, J.; Jiang, J.; Cai, H.; Yang, F.; Jin, H.; Yang, P.; Cai, J.; Chen, Z.W. GE11 Peptide-Conjugated Selenium Nanoparticles for EGFR Targeted Oridonin Delivery to Achieve Enhanced Anticancer Efficacy by Inhibiting EGFR-Mediated PI3K/AKT and Ras/Raf/MEK/ERK Pathways. Drug Deliv. 2017, 24, 1549–1564. [Google Scholar] [CrossRef]
- Song, Z.; Liu, T.; Chen, T. Overcoming Blood-Brain Barrier by HER2-Targeted Nanosystem to Suppress Glioblastoma Cell Migration, Invasion and Tumor Growth. J. Mater. Chem. B 2018, 6, 568–579. [Google Scholar] [CrossRef]
- Al-Bassam, L.; Naiyer, M.M.; Morris, C.J.; Brocchini, S.; Williams, G.R. Selenium Nanoparticles: Synthesis, Stability, and In Vitro Evaluation in Human Lens Epithelial Cells. Pharmaceutics 2025, 17, 1157. [Google Scholar] [CrossRef]
- Amiri, F.; Alishahi, F.; Mohammadifar, G.; Izadidehkordi, S.; Charmduzi, F.; Dialameh, F.; Khiyavi, A.A. Enhanced Anticancer Efficacy of Selenium Nanoparticles Encapsulated in Niosomes: A Novel Therapeutic Strategy. Indian J. Clin. Biochem. 2025. [CrossRef]
- Hu, R.; Wang, X.; Han, L.; Lu, X. The Developments of Surface-Functionalized Selenium Nanoparticles and Their Applications in Brain Diseases Therapy. Biomimetics 2023, 8, 259. [Google Scholar] [CrossRef]
- Chen, D.; Lu, H.; Ma, Y.; Huang, Y.; Zhang, T.; Fan, S.; Lin, W.; Huang, Y.; Jin, H.; Ruan, Y.; et al. Trends and Recent Progresses of Selenium Nanoparticles as Novel Autophagy Regulators for Therapeutic Development. Front. Nutr. 2023, 10, 1116051. [Google Scholar] [CrossRef]





| Ligand Category | Primary Purpose | Secondary Functions | Ref. |
|---|---|---|---|
| Polymers (PEG, chitosan, PLGA, PVP, alginate, silica) | Stabilization, colloidal stability | Control of drug release, stealth properties, and pH sensitivity | [53,54,55] |
| Peptides (RGD, Angiopep-2, RW-rich peptides) | Targeted delivery | Cell penetration, receptor binding | [57,58,59,60] |
| Small Molecules (FA, HA, glucose) | Receptor-specific targeting | Improved uptake, synergistic effect | [61,62,63] |
| Proteins/Antibodies (albumin, anti-HER2, anti-EGFR) | High-specificity targeting | Prolonged circulation, receptor-mediated uptake | [64,65,66] |
| Natural/Plant-derived ligands | Green synthesis & stabilization | Antioxidant or antimicrobial synergistic activity | [67,68] |
| Biological Sources | Biomimetic coating | Enhanced biocompatibility, lower toxicity | [71] |
| Name of the Ligand-SeNPs | Mechanism of Entry | Ref. |
|---|---|---|
| Folic Acid-SeNPs | Clathrin and caveolin-mediated endocytosis | [107] |
| Poly-L-lysine-lactobionic acid- SeNPs | Asialoglycoprotein receptor-mediated endocytosis | [108] |
| Galactose-SeNPs | Clathrin-mediated endocytosis | [109] |
| Gracilaria lemaneiformis polysaccharide-SeNPs | αvβ3 integrin-mediated endocytosis | [110] |
| Lentinan-SeNPs | Caveolae-mediated endocytosis | [111] |
| Arginylglycylaspartic acid (RGD)-SeNPs | αvβ3 integrin-mediated endocytosis | [59] |
| GE11 Peptide-Se NPs | Lipid raft-mediated and clathrin-mediated endocytic pathway | [112] |
| human epidermal growth factor receptor 2 (HER2)-SeNPs | Receptor-mediated endocytosis | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirazi, A.N.; Vadlapatla, R.; Koomer, A.; Yep, K.; Parang, K. Selenium Nanoparticles as Versatile Delivery Tools. Pharmaceutics 2025, 17, 1556. https://doi.org/10.3390/pharmaceutics17121556
Shirazi AN, Vadlapatla R, Koomer A, Yep K, Parang K. Selenium Nanoparticles as Versatile Delivery Tools. Pharmaceutics. 2025; 17(12):1556. https://doi.org/10.3390/pharmaceutics17121556
Chicago/Turabian StyleShirazi, Amir Nasrolahi, Rajesh Vadlapatla, Ajoy Koomer, Kyle Yep, and Keykavous Parang. 2025. "Selenium Nanoparticles as Versatile Delivery Tools" Pharmaceutics 17, no. 12: 1556. https://doi.org/10.3390/pharmaceutics17121556
APA StyleShirazi, A. N., Vadlapatla, R., Koomer, A., Yep, K., & Parang, K. (2025). Selenium Nanoparticles as Versatile Delivery Tools. Pharmaceutics, 17(12), 1556. https://doi.org/10.3390/pharmaceutics17121556

