Hydrogels-Based Drug Delivery System for Wound Healing

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 10 February 2026 | Viewed by 984

Special Issue Editors


E-Mail
Guest Editor
“Petru Poni” Macromolecular Chemistry Institute, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
Interests: polymers synthesis, including by nonconventional methods; chemical modifications; hydrogels; polymeric matrices for bioapplications; nanoparticles; nanotechnology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41-A, RO-700487 Iasi, Romania
Interests: hydrogels; drug delivery; nanomaterials; magnetic composites; polysaccharides

Special Issue Information

Dear Colleagues,

Hydrogels, used as advanced platforms for drug delivery in wound healing, mark a notable innovation in the field of material science. These networks can be created from a diverse range of materials, such as natural polymers, synthetic polymers, polymerizable monomers, or combinations of natural and synthetic polymers, each material having a specific impact on the final characteristics, while physical, chemical, and hybrid bonds ensure the formation and stability of their structure. Hydrogels are remarkable for their ability to deliver therapeutic substances in a controlled and prolonged manner. Their excellent biocompatibility, flexibility, porous structure, and hydrated polymeric composition allow them to mimic the natural microenvironment of the skin, promoting cellular processes and healthy tissue formation. Furthermore, the ability of hydrogels to respond to external stimuli, as well as the development of injectable hydrogels with shear-thinning and self-healing properties offer promising solutions for controlled drug delivery and the development of less invasive therapeutic approaches, thus facilitating tissue repair directly at the targeted site.

This Special Issue, entitled “Hydrogels-based drug delivery system for wound healing”, aims to highlight the versatility of hydrogels in addressing complex biological challenges and also to contribute to the development of advanced solutions in wound healing.

Dr. Loredana Elena Niţə
Dr. Alina Ghilan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • controlled drug release
  • polymer-based hydrogels
  • advanced wound dressings
  • smart hydrogels for tissue regeneration
  • bioactive hydrogels
  • 3D-printed hydrogels for personalized wound dressings

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 7468 KB  
Article
Laponite®-Based Smart Hydrogels for Sustained Topical Delivery of Silver Sulfadiazine: A Strategy for the Treatment of Contaminated or Biofilm-Forming Wounds
by Jonas Lira do Nascimento, Michely Conceição Viana da Costa, Leticia Farias de Macêdo, Luiz Henrique Chaves de Macêdo, Ricardo Olímpio de Moura, Tomás Jeferson Alves de Mélo, Wilma Raianny Vieira da Rocha, Ana Cristina Figueiredo de Melo Costa, José Lamartine Soares-Sobrinho and Dayanne Tomaz Casimiro da Silva
Pharmaceutics 2025, 17(9), 1234; https://doi.org/10.3390/pharmaceutics17091234 - 22 Sep 2025
Viewed by 679
Abstract
Background/Objectives: Silver sulfadiazine (AgSD) is widely used in the topical treatment of burns and infected wounds, but its conventional formulations present drawbacks such as poor water solubility, the need for multiple daily applications, and patient discomfort. To overcome these limitations, this study [...] Read more.
Background/Objectives: Silver sulfadiazine (AgSD) is widely used in the topical treatment of burns and infected wounds, but its conventional formulations present drawbacks such as poor water solubility, the need for multiple daily applications, and patient discomfort. To overcome these limitations, this study aimed to develop and evaluate Laponite® (LAP)-based hydrogels loaded with AgSD for controlled release and enhanced antimicrobial and antibiofilm efficacy, offering a promising alternative for the treatment of contaminated or biofilm-forming wounds. Methods: Laponite®-based hydrogels containing 1% and 1.2% AgSD (LAP@AgSD) were prepared using a one-pot method. The formulations were characterized rheologically, thermally, and structurally. In vitro drug release was assessed using Franz diffusion cells, and mathematical modeling was applied to determine release kinetics. Antibacterial and antibiofilm activities were evaluated against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using standardized microbiological methods. Results: LAP@AgSD hydrogels exhibited pseudoplastic behavior, high structural integrity, and enhanced thermal stability. In vitro release assays revealed a sustained release profile, best fitted by the Weibull model, indicating diffusion-controlled mechanisms. Antibacterial assays demonstrated concentration-dependent activity, with LAP@AgSD 1.2% showing superior efficacy over LAP@AgSD 1% and comparable performance to the commercial silver sulfadiazine cream (CC-AgSD). Biofilm inhibition was significant for all formulations, with CC-AgSD 1% exhibiting the highest immediate activity, while LAP@AgSD 1.2% provided sustained antibiofilm potential. Conclusions: LAP-based hydrogels are promising smart delivery systems for AgSD, combining mechanical robustness, controlled drug release, and effective antibacterial and antibiofilm activities. These findings support their potential use in topical therapies for infected and chronic wounds, particularly where biofilm formation is a challenge. Full article
(This article belongs to the Special Issue Hydrogels-Based Drug Delivery System for Wound Healing)
Show Figures

Graphical abstract

Back to TopTop