Biocompatible Polymers for Drug Delivery

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 22 May 2025 | Viewed by 2602

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
Interests: drug delivery; pharmaceutical technology; drug transport; polymers; hydrogels

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute to the Special Issue entitled “Biocompatible Polymers for Drug Delivery”, which aims to present the current status of and perspectives on biocompatible and biodegradable polymers as carriers for drug delivery applications. Advances in polymer science have led to the development of numerous efficient drug delivery systems, and polymeric delivery systems are primarily created to achieve controlled drug release or targeted drug delivery. The selection and design of a polymer is a challenging task due to the diversity of their structures and surface and bulk properties. For drug delivery, it is essential to use biodegradable polymer formulations for the safe and efficient transport and release of a drug at its intended site. Moreover, stimuli-responsive biodegradable polymers, as smart and functional materials, can be selected as drug carriers for controlled or target-specific drug delivery.

This Special Issue investigates the ground-breaking advancements within the realm of polymer and drug delivery sciences, with a special emphasis on novel design technologies and biopolymers for drug delivery. Therefore, we invite researchers to submit their original research articles or review articles outlining innovations pertaining to polymeric drug formulations.

Dr. Nebojša Pavlović
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • biocompatible polymers
  • functional materials
  • natural polymers
  • polymeric composites
  • drug delivery systems
  • biohydrogels
  • formulation challenges
  • controlled release
  • biomedical applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

16 pages, 10924 KiB  
Article
Building of CuO2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells
by Jiaru Zhang, Zuoping Li, Zhenzhen Xie, Shiwan You, Yanbing Chen, Yuling Zhang, Jing Zhang, Na Zhao, Xiling Deng and Shiguo Sun
Pharmaceutics 2024, 16(12), 1614; https://doi.org/10.3390/pharmaceutics16121614 - 19 Dec 2024
Cited by 1 | Viewed by 1069
Abstract
Background/Objectives: With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs [...] Read more.
Background/Objectives: With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Methods: Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO2) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO2@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs). In response to the tumor microenvironment, DHA interacts with copper ion (Cu2+) to produce ROS, and a double (diethylthiocarbamate)-copper (II) (CuET) is generated by the complexation of DSF and Cu2+, which consumes GSH and inhibits antioxidant system. Meanwhile, utilizing the Fenton-like effect induced by the multi-copper mode can achieve ROS storm, activate the MAPK pathway, and achieve chemotherapy (CT) and chemodynamic (CDT). Results: Taking pancreatic cancer cell lines PANC-1 and BxPC-3 as the research objects, cell line experiments in vitro proved that CCTDD NPs exhibit efficient cytotoxicity on cancer cells. Conclusions: The CCTDD NPs show great potential in resisting pancreatic cancer cells and provides a simple strategy for designing powerful metal matrix composites. Full article
(This article belongs to the Special Issue Biocompatible Polymers for Drug Delivery)
Show Figures

Figure 1

Other

Jump to: Research

29 pages, 1392 KiB  
Systematic Review
Recent Advances in Vitamin E TPGS-Based Organic Nanocarriers for Enhancing the Oral Bioavailability of Active Compounds: A Systematic Review
by Chee Ning Wong, Siew-Keah Lee, Yang Mooi Lim, Shi-Bing Yang, Yik-Ling Chew, Ang-Lim Chua and Kai Bin Liew
Pharmaceutics 2025, 17(4), 485; https://doi.org/10.3390/pharmaceutics17040485 - 7 Apr 2025
Viewed by 924
Abstract
Background: D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), an amphiphilic derivative of natural vitamin E, functions as both a drug efflux inhibitor and a protector against enzymatic degradation and has been widely incorporated into nano-formulations for drug design and delivery. Objective: This systematic review [...] Read more.
Background: D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), an amphiphilic derivative of natural vitamin E, functions as both a drug efflux inhibitor and a protector against enzymatic degradation and has been widely incorporated into nano-formulations for drug design and delivery. Objective: This systematic review evaluates TPGS-based organic nanocarriers, emphasizing their potential to enhance bioavailability of active compounds which include drugs and phytochemicals, improve pharmacokinetic profiles, and optimize therapeutic outcomes, eventually overcoming the limitations of conventional oral active compounds delivery. Search strategy: Data collection was carried out by entering key terms (TPGS) AND (Micelle OR Liposome OR Nanoparticle OR Nanotube OR Dendrimer OR Niosome OR Nanosuspension OR Nanomicelle OR Nanocrystal OR Nanosphere OR Nanocapsule) AND (Oral Bioavailability) into the Scopus database. Inclusion criteria: Full-text articles published in English and relevant to TPGS, which featured organic materials, utilized an oral administration route, and included pharmacokinetic study, were included to the final review. Data extraction and analysis: Data selection was conducted by two review authors and subsequently approved by all other authors through a consensus process. The outcomes of the included studies were reviewed and categorized based on the types of nanocarriers. Results: An initial search of the database yielded 173 records. After screening by title and abstract, 52 full-text articles were analyzed. A total of 21 papers were excluded while 31 papers were used in this review. Conclusions: This review concludes that TPGS-based organic nanocarriers are able to enhance the bioavailability of various active compounds, including several phytochemicals, leveraging TPGS’s amphiphilic nature, inhibition of efflux transporters, protection against degradation, and stabilization properties. Despite using the same excipient, variability in particle size, zeta potential, and encapsulation efficiency among nanocarriers indicates the need for tailored formulations. A comprehensive approach involving the development and standardized comparison of diverse TPGS-incorporated active compound formulations is essential to identify the optimal TPGS-based nanocarrier for improving a particular active compound’s bioavailability. Full article
(This article belongs to the Special Issue Biocompatible Polymers for Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop