New Two-Dimensional Semiconductor Materials and Electronic Devices

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanophotonics Materials and Devices".

Deadline for manuscript submissions: closed (20 March 2025) | Viewed by 693

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
Interests: chemical vapor deposition; doping; dissolution–precipitation; electronic devices; simulation

E-Mail Website
Guest Editor
Songshan Lake Materials Laboratory, Dongguan 523808, China
Interests: chemical vapor deposition; electronic devices; ferroelectricity; high quality

Special Issue Information

Dear Colleagues,

Two-dimensional materials and their heterostructures are widely studied in electronics, photonics, sensors, catalysts, etc. Synthesis strategies have been developed for the growth of wafer-scale high-quality two-dimensional materials, which accelerate the application potential of these materials in industry.

The scope of this Special Issue includes two-dimensional synthesis methods, properties modification, characterization methods, and various device applications. This Special Issue focuses on both scientific and engineering aspects of the growth, characterization, simulation, and device performance towards theoretical innovation and industrial applications.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Two-dimensional materials for device applications;
  • Two-dimensional synthesis methods;
  • Two-dimensional heterostructures.

We look forward to receiving your contributions.

Dr. Zhengyang Cai
Dr. Lei Tang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • two-dimensional materials
  • chemical vapor deposition
  • nucleation growth theory
  • doping
  • wafer scale
  • high quality
  • electronic devices
  • optoelectronic devices
  • neuromorphic devices
  • photonics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2324 KiB  
Article
Revealing the Role of Vapor Flux in Chemical Vapor Deposition Growth of Bi2O2Se for Photodetectors
by Qin Huang, Jiqing Nie, Jian Li, Meng Wang, Changyuan Ding, Haiyan Nan, Xiaofeng Gu and Zhengyang Cai
Nanomaterials 2025, 15(8), 567; https://doi.org/10.3390/nano15080567 - 8 Apr 2025
Viewed by 392
Abstract
Two-dimensional (2D) materials are regarded as key foundational materials for next-generation optoelectronic devices. As a promising new type of 2D layered semiconductor, Bi2O2Se has emerged as a strong candidate for high-performance opto-electronic devices due to its high carrier mobility, [...] Read more.
Two-dimensional (2D) materials are regarded as key foundational materials for next-generation optoelectronic devices. As a promising new type of 2D layered semiconductor, Bi2O2Se has emerged as a strong candidate for high-performance opto-electronic devices due to its high carrier mobility, tunable bandgap, and excellent environmental stability. However, achieving precise control over Bi2O2Se growth to obtain high-quality Bi2O2Se remains a challenge in the field. In this study, we employed chemical vapor deposition (CVD) to grow thin-layer 2D Bi2O2Se flakes. We further used a transport model and thermodynamic Arrhenius fitting to analyze the relationship between vapor flux and the properties of the flakes. Density functional theory was used to study the electronic structure of the as-grown samples. The electrical and optoelectronic results demonstrate that Bi2O2Se-based FETs exhibit good performance in terms of mobility (129 cm2V−1s−1), on/off ratio (4.51 × 105), and photoresponsivity (94.98 AW−1). This work provides a new way to study the influence of vapor flux on the sizes and shapes of Bi2O2Se flakes for photodetectors. Full article
(This article belongs to the Special Issue New Two-Dimensional Semiconductor Materials and Electronic Devices)
Show Figures

Figure 1

Back to TopTop