Nanomaterials for Energy Conversion and Storage (2nd Edition)

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: closed (20 August 2024) | Viewed by 3524

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
Interests: polymer; metal-organic framework; energy conversion; energy storage; solar cell; (photo)electrochemical cell; supercapacitor; Li-ion battery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanomaterials are key to fundamental advances in energy conversion and storage, both of which are vital for meeting the challenge of global warming and the finite nature of fossil fuels. Nanomaterials offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy conversion and storage devices. One of the key challenges facing the widespread use and commercialization of promising energy conversion and storage devices is the high cost of the electrode and electrolyte materials and inefficiencies in their assembly and utilization.

This Special Issue of Nanomaterials will attempt to address the most recent advances in energy conversion and storage devices based on nanomaterials. We will focus on not only their preparation and characterization but also on reports of their physical/chemical properties to be applied in devices.

Prof. Dr. Jung Tae Park
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • energy conversion
  • energy storage
  • battery
  • supercapacitor
  • water splitting
  • solar cell
  • metal–organic framework
  • polymer
  • electrocatalyst

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 4552 KiB  
Article
In Situ, Nitrogen-Doped Porous Carbon Derived from Mixed Biomass as Ultra-High-Performance Supercapacitor
by Yuqiao Bai, Qizhao Wang, Jieni Wang, Shuqin Zhang, Chenlin Wei, Leichang Cao and Shicheng Zhang
Nanomaterials 2024, 14(16), 1368; https://doi.org/10.3390/nano14161368 - 21 Aug 2024
Viewed by 575
Abstract
How to address the destruction of the porous structure caused by elemental doping in biochar derived from biomass is still challenging. In this work, the in-situ nitrogen-doped porous carbons (ABPCs) were synthesized for supercapacitor electrode applications through pre-carbonization and activation processes using nitrogen-rich [...] Read more.
How to address the destruction of the porous structure caused by elemental doping in biochar derived from biomass is still challenging. In this work, the in-situ nitrogen-doped porous carbons (ABPCs) were synthesized for supercapacitor electrode applications through pre-carbonization and activation processes using nitrogen-rich pigskin and broccoli. Detailed characterization of ABPCs revealed that the best simple ABPC-4 exhibited a super high specific surface area (3030.2–3147.0 m2 g−1) and plentiful nitrogen (1.35–2.38 wt%) and oxygen content (10.08–15.35 wt%), which provided more active sites and improved the conductivity and electrochemical activity of the material. Remarkably, ABPC-4 showed an outstanding specific capacitance of 473.03 F g−1 at 1 A g−1. After 10,000 cycles, its capacitance retention decreased by only 4.92% at a current density of 10 A g−1 in 6 M KOH. The assembled symmetric supercapacitor ABPC-4//ABPC-4 achieved a power density of 161.85 W kg−1 at the maximum energy density of 17.51 Wh kg−1 and maintained an energy density of 6.71 Wh kg−1 when the power density increased to 3221.13 W kg−1. This study provides a mixed doping approach to achieve multi-element doping, offering a promising way to apply supercapacitors using mixed biomass. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Storage (2nd Edition))
Show Figures

Graphical abstract

14 pages, 4527 KiB  
Article
ZIF-8-Based Nitrogen and Monoatomic Metal Co-Doped Pyrolytic Porous Carbon for High-Performance Supercapacitor Applications
by Xiaobo Han, Yihao Geng, Jieni Wang, Shuqin Zhang, Chenlin Wei, Leichang Cao and Shicheng Zhang
Nanomaterials 2024, 14(16), 1367; https://doi.org/10.3390/nano14161367 - 21 Aug 2024
Viewed by 631
Abstract
Metal–organic frameworks (MOFs) receive wide attention owing to their high specific surface area, porosity, and structural designability. In this paper, ZC-Ru and ZC-Cu electrodes loaded with monatomic Ru and Cu doped with nitrogen were prepared by pyrolysis, ion impregnation, and carbonization process using [...] Read more.
Metal–organic frameworks (MOFs) receive wide attention owing to their high specific surface area, porosity, and structural designability. In this paper, ZC-Ru and ZC-Cu electrodes loaded with monatomic Ru and Cu doped with nitrogen were prepared by pyrolysis, ion impregnation, and carbonization process using ZIF-8 synthesized by static precipitation as a precursor. ZC-Cu has a high specific surface area of 859.78 m2 g−1 and abundant heteroatoms O (10.04%) and N (13.9%), showing the specific capacitance of 222.21 F g−1 at 0.1 A g−1 in three-electrode system, and low equivalent series resistance (Rct: 0.13 Ω), indicating excellent energy storage capacity and electrical conductivity. After 10,000 cycles at 1 A g−1 in 6 M KOH electrolyte, it still has an outstanding capacitance retention of 99.42%. Notably, symmetric supercapacitors ZC-Cu//ZC-Cu achieved the maximum power density and energy density of 485.12 W·kg−1 and 1.61 Wh·kg−1, respectively, positioning ZC-Cu among the forefront of previously known MOF-based electrode materials. This work demonstrates the enormous potential of ZC-Cu in the supercapacitor industry and provides a facile approach to the treatment of transition metal. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Storage (2nd Edition))
Show Figures

Figure 1

12 pages, 2364 KiB  
Article
Amphiphilic Graft Copolymers as Templates for the Generation of Binary Metal Oxide Mesoporous Interfacial Layers for Solid-State Photovoltaic Cells
by Seung Man Lim, Hayeon Jeong, Juyoung Moon and Jung Tae Park
Nanomaterials 2024, 14(4), 352; https://doi.org/10.3390/nano14040352 - 13 Feb 2024
Viewed by 814
Abstract
The binary metal oxide mesoporous interfacial layers (bi-MO meso IF layer) templated by a graft copolymer are synthesized between a fluorine-doped tin oxide (FTO) substrate and nanocrystalline TiO2 (nc-TiO2). Amphiphilic graft copolymers, Poly(epichlorohydrin)-graft-poly(styrene), PECH-g-PS, were used [...] Read more.
The binary metal oxide mesoporous interfacial layers (bi-MO meso IF layer) templated by a graft copolymer are synthesized between a fluorine-doped tin oxide (FTO) substrate and nanocrystalline TiO2 (nc-TiO2). Amphiphilic graft copolymers, Poly(epichlorohydrin)-graft-poly(styrene), PECH-g-PS, were used as a structure-directing agent, and the fabricated bi-MO meso IF layer exhibits good interconnectivity and high porosity. Even if the amount of ZnO in bi-MO meso IF layer increased, it was confirmed that the morphology and porosity of the bi-MO meso IF layer were well-maintained. In addtion, the bi-MO meso IF layer coated onto FTO substrates shows higher transmittance compared with a pristine FTO substrate and dense-TiO2/FTO, due to the reduced surface roughness of FTO. The overall conversion efficiency (η) of solid-state photovoltaic cells, dye-sensitized solar cells (DSSCs) fabricated with nc-TiO2 layer/bi-MO meso IF layer TZ1 used as a photoanode, reaches 5.0% at 100 mW cm−2, which is higher than that of DSSCs with an nc-TiO2 layer/dense-TiO2 layer (4.2%), resulting from enhanced light harvesting, good interconnectivity, and reduced interfacial resistance. The cell efficiency of the device did not change after 15 days, indicating that the bi-MO meso IF layer with solid-state electrolyte has improved electrode/electrolyte interface and electrochemical stability. Additionally, commercial scattering layer/nc-TiO2 layer/bi-MO meso IF layer TZ1 photoanode-fabricated solid-state photovoltaic cells (DSSCs) achieved an overall conversion efficiency (η) of 6.4% at 100 mW cm−2. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Storage (2nd Edition))
Show Figures

Figure 1

16 pages, 3124 KiB  
Article
Improved Thermophysical and Mechanical Properties in LiNaSO4 Composites for Thermal Energy Storage
by Maria Taeño, Ariba Adnan, Cristina Luengo, Ángel Serrano, Jean-Luc Dauvergne, Paola Crocomo, Ali Huerta, Stefania Doppiu and Elena Palomo del Barrio
Nanomaterials 2024, 14(1), 78; https://doi.org/10.3390/nano14010078 - 27 Dec 2023
Cited by 1 | Viewed by 1078
Abstract
Solid-solid phase-change materials have great potential for developing compact and low-cost thermal storage systems. The solid-state nature of these materials enables the design of systems analogous to those based on natural rocks but with an extraordinarily higher energy density. In this scenario, the [...] Read more.
Solid-solid phase-change materials have great potential for developing compact and low-cost thermal storage systems. The solid-state nature of these materials enables the design of systems analogous to those based on natural rocks but with an extraordinarily higher energy density. In this scenario, the evaluation and improvement of the mechanical and thermophysical properties of these solid-solid PCMs are key to exploiting their full potential. In this study, LiNaSO4-based composites, comprising porous MgO and expanded graphite (EG) as the dispersed phases and LiNaSO4 as the matrix, have been prepared with the aim of enhancing the thermophysical and mechanical properties of LiNaSO4. The characteristic structure of MgO and the high degree of crystallinity of the EG600 confer on the LiNaSO4 sample mechanical stability, which leads to an increase in the Young’s modulus (almost three times higher) compared to the pure LiNaSO4 sample. These materials are proposed as a suitable candidate for thermal energy storage applications at high temperatures (400–550 °C). The addition of 5 wt.% of MgO or 5% of EG had a minor influence on the solid-solid phase change temperature and enthalpy; however, other thermal properties such as thermal conductivity or specific heat capacity were increased, extending the scope of PCMs use. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Storage (2nd Edition))
Show Figures

Figure 1

Back to TopTop