Enteric Disease-Associated Pathogens

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Gut Microbiota".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 2636

Special Issue Editor


E-Mail Website
Guest Editor
Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Sun Yat-Sen University, Guangzhou, China
Interests: inflammatory bowel diseases; colorectal cancer; irritable bowel syndrome; infectious diarrhea; celiac disease

Special Issue Information

Dear Colleagues,

Enteric diseases, a group of illnesses that affect the intestines, cause a range of symptoms including diarrhea, abdominal pain, nausea, vomiting and weight loss. Microbes play a critical role in the development and manifestation of these diseases. This Special Issue of Microorganisms delves into the exploration of microbes most closely linked to enteric diseases, including inflammatory bowel disease, colorectal cancer, irritable bowel syndrome, infectious diarrhea, celiac disease, appendicitis, etc. As such, this issue aims to enhance our understanding of the microbes that cause enteric diseases, and their interactions with the host immune system. It is hoped that this Special Issue will not only interest researchers exploring human enteric diseases, but also those studying the animal models of these conditions. The topic presented covers various areas related to enteric diseases, including microbiota profiling in enteric diseases, microbial pathogenesis, the host’s cellular and immune responses to microbes, the interaction between nutrition and the microbiota, the epidemiology of microbes, vaccine development and pathogen therapeutics.

Dr. Lixin Zhu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inflammatory bowel diseases
  • colorectal cancer
  • irritable bowel syndrome
  • infectious diarrhea
  • celiac disease

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2847 KiB  
Article
Regulation of Isoleucine on Colonic Barrier Function in Rotavirus-Infected Weanling Piglets and Analysis of Gut Microbiota and Metabolomics
by Changsheng Jiang, Weiying Chen, Yanan Yang, Xiaojin Li, Mengmeng Jin, Ahmed H. Ghonaim, Shenghe Li and Man Ren
Microorganisms 2024, 12(12), 2396; https://doi.org/10.3390/microorganisms12122396 - 22 Nov 2024
Cited by 1 | Viewed by 932
Abstract
Rotavirus (RV) is a significant contributor to diarrhea in both young children and animals, especially in piglets, resulting in considerable economic impacts on the global pig industry. Isoleucine (Ile), a branched-chain amino acid, is crucial for regulating nutrient metabolism and has been found [...] Read more.
Rotavirus (RV) is a significant contributor to diarrhea in both young children and animals, especially in piglets, resulting in considerable economic impacts on the global pig industry. Isoleucine (Ile), a branched-chain amino acid, is crucial for regulating nutrient metabolism and has been found to help mitigate diarrhea. This study aimed to assess the impact of isoleucine supplementation in feed on colonic barrier function, colonic microbiota, and metabolism in RV-infected weanling piglets. A total of thirty-two weaned piglets, aged 21 days, were randomly assigned to two dietary groups (each further divided into two subgroups, with eight replicates in each subgroup), receiving diets with either 0% or 1% isoleucine for a duration of 14 days. One group from each treatment was then challenged with RV, and the experimental period lasted for 19 days. The results showed that dietary Ile significantly increased the secretion of IL-4, IL-10, and sIgA in the colon of RV-infected weanling piglets (p < 0.05). In addition, Ile supplementation notably increased the expression of tight junction proteins, including Claudin-3, Occludin, and ZO-1 (p < 0.01), as well as the mucin protein MUC-1 in the colon of RV-infected weanling piglets (p < 0.05). Gut microbiota analysis revealed that dietary Ile increased the relative abundance of Prevotella and decreased the relative abundance of Rikenellaceae in the colons of RV-infected weanling piglets. Compared with the RV+CON, metabolic pathways in the RV+ILE group were significantly enriched in vitamin digestion and absorption, steroid biosynthesis, purine metabolism, pantothenate and CoA biosynthesis, cutin, suberine, and wax biosynthesis, as well as fatty acid biosynthesis, and unsaturated fatty acid biosynthesis. In conclusion, dietary Ile supplementation can improve immunity, colonic barrier function, colonic microbiota, and colonic metabolism of RV-infected weaned piglets. These findings provide valuable insights into the role of isoleucine in the prevention and control of RV. Full article
(This article belongs to the Special Issue Enteric Disease-Associated Pathogens)
Show Figures

Figure 1

13 pages, 3170 KiB  
Article
Diversity and Complexity of CTXΦ and Pre-CTXΦ Families in Vibrio cholerae from Seventh Pandemic
by Xiaorui Li, Yu Han, Wenxuan Zhao, Yue Xiao, Siyu Huang, Zhenpeng Li, Fenxia Fan, Weili Liang and Biao Kan
Microorganisms 2024, 12(10), 1935; https://doi.org/10.3390/microorganisms12101935 - 24 Sep 2024
Viewed by 1330
Abstract
CTXΦ is a lysogenic filamentous phage that carries the genes encoding cholera toxin (ctxAB), the main virulence factor of Vibrio cholerae. The toxigenic conversion of environmental V. cholerae strains through CTXΦ lysogenic infection is crucial for the emergence of new [...] Read more.
CTXΦ is a lysogenic filamentous phage that carries the genes encoding cholera toxin (ctxAB), the main virulence factor of Vibrio cholerae. The toxigenic conversion of environmental V. cholerae strains through CTXΦ lysogenic infection is crucial for the emergence of new pathogenic clones. A special allelic form of CTXΦ, called pre-CTXΦ, is a precursor of CTXΦ and without ctxAB. Different members of the pre-CTXΦ and CTXΦ families are distinguished by the sequence of the transcriptional repressor-coding gene rstR. Multiple rstR alleles can coexist within a single strain, demonstrating the diverse structure and complex genomic integration patterns of CTXΦ/pre-CTXΦ prophage on the chromosome. Exploration of the diversity and co-integration patterns of CTXΦ/pre-CTXΦ prophages in V. cholerae can help to understand the evolution of this phage family. In this study, 21 V. cholerae strains, which were shown to carry the CTXΦ/pre-CTXΦ prophages as opposed to typical CTXETΦ-RS1 structure, were selected from approximately 1000 strains with diverse genomes. We identified two CTXΦ members and six pre-CTXΦ members with distinct rstR alleles, revealing complex chromosomal DNA integration patterns and arrangements of different prophages in these strains. Promoter activity assays showed that the transcriptional repressor RstR protected against CTXΦ superinfection by preventing the replication and integration of CTXΦ/pre-CTXΦ phages containing the same rstR allele, supporting the co-integration of the diverse CTXΦ/pre-CTXΦ members observed. The numbers and types of prophages and their co-integration arrangements in serogroup O139 strains were more complex than those in serogroup O1 strains. Also, these CTXΦ/pre-CTXΦ members were shown to present the bloom period of the CTXΦ/pre-CTXΦ family during wave 2 of the seventh cholera pandemic. Together, these analyses deepen our comprehension of the genetic variation of CTXΦ and pre-CTXΦ and provide insights into the evolution of the CTXΦ/pre-CTXΦ family in the seventh cholera pandemic. Full article
(This article belongs to the Special Issue Enteric Disease-Associated Pathogens)
Show Figures

Figure 1

Back to TopTop