marinedrugs-logo

Journal Browser

Journal Browser

Marine Compounds as Inhibitors

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Chemoecology for Drug Discovery".

Deadline for manuscript submissions: 1 December 2025 | Viewed by 152

Special Issue Editor


E-Mail Website
Guest Editor
College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
Interests: marine natural products; isolation and structural elucidation; microbiome; biosynthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,   

Despite significant progress in drug discovery and development over recent decades, there remains a critical need for innovative therapeutic agents targeting a wide range of diseases, including cancer, infectious diseases, inflammatory disorders, and metabolic syndromes. One promising and underexploited source of bioactive compounds is the marine environment. Marine natural products have demonstrated unique and unprecedented chemical scaffolds that are rarely found in terrestrial sources, offering valuable templates for the development of novel inhibitors.

This Special Issue will focus on showcasing the diversity and potential of marine natural products as inhibitors against a broad spectrum of biological targets. We particularly welcome studies that report new chemical scaffolds or uncover previously unknown biological activities from known marine compounds. Given the growing interest in compounds with immunomodulatory functions, we also invite studies on marine inhibitors that modulate immune responses, including their application alongside immune checkpoint inhibitors or other immunotherapies.

For this Special Issue, we invite academic and industry researchers to submit original research articles and reviews addressing the biological activities, target selectivity, chemical diversity, and potential therapeutic applications of marine-derived inhibitors.

Dr. Seoung Rak Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine natural products
  • bioactive compounds
  • enzyme inhibition
  • anticancer agents
  • antimicrobial agents
  • immunomodulators
  • structure–activity relationship
  • inhibitors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 4650 KB  
Article
5Z-7-Oxozeanol Isolated from the Fungus Curvularia sp. MDCW-1060 Inhibits the Proliferation of MDA-MB-231 Cells via the PI3K-Akt and MAPK Pathways
by Hong Zhang, Jianjian Wang, Chang Xu, Kai Liu, Jufang Xie, Zhoucheng He, Yonghong Liu, Cong Wang and Xinjian Qu
Mar. Drugs 2025, 23(11), 414; https://doi.org/10.3390/md23110414 - 23 Oct 2025
Abstract
The discovery of novel marine natural products and their sustainable application continue to be vital focuses in marine biological research. The aim of this study is to investigate the inhibitory effect of the compound 5Z-7-Oxozeaenol isolated from the fungus Curvularia sp. MDCW-1060 on [...] Read more.
The discovery of novel marine natural products and their sustainable application continue to be vital focuses in marine biological research. The aim of this study is to investigate the inhibitory effect of the compound 5Z-7-Oxozeaenol isolated from the fungus Curvularia sp. MDCW-1060 on the proliferation of MDA-MB-231 cells and its molecular mechanism. A series of functional assays, including 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, Transwell migration, and colony formation, were employed to evaluate the effects of 5Z-7-Oxozeaenol on cellular viability, apoptosis, migration, and clonogenicity. The RNA sequencing (RNA-seq) coupled with bioinformatic analysis was conducted to identify affected differentiated gene expression and signaling pathways. The molecular docking was performed to predict potential protein targets, and Western blot was used to validate expression and phosphorylation levels of key signaling molecules. The results demonstrated that 5Z-7-Oxozeaenol significantly suppressed proliferation and migration while promoting apoptosis in MDA-MB-231 cells. The transcriptomic analysis indicated enrichment in pathways related to cancer, cytokine–cytokine receptor interaction, MAPK and PI3K-Akt signaling, and cell adhesion molecules. The molecular docking suggested a high binding affinity between 5Z-7-Oxozeaenol and PTPRN. While Western blot analysis confirmed the downregulation of phosphorylated FAK, PI3K, Akt, and MAPK, along with reduced cyclin D1 expression. Additionally, 5Z-7-Oxozeaenol upregulated the pro-apoptotic proteins p53 and cleaved caspase-3. In conclusion, 5Z-7-Oxozeaenol exerts potent antitumor effects on MDA-MB-231 cells through multi-pathway inhibition and induction of apoptosis, highlighting its potential as a marine-derived therapeutic candidate for breast cancer treatment. Full article
(This article belongs to the Special Issue Marine Compounds as Inhibitors)
Show Figures

Figure 1

15 pages, 5888 KB  
Article
Identifying a Marine-Derived Small-Molecule Nucleoprotein Inhibitor Against Influenza A Virus
by Zihan Wang, Yang Zhang, Shangjie Xu, Lishan Sun, Hongwei Zhao and Wei Wang
Mar. Drugs 2025, 23(11), 413; https://doi.org/10.3390/md23110413 - 23 Oct 2025
Abstract
Influenza A virus (IAV) poses a major threat to global public health, exerting immense pressure on human health and the economy. The IAV nucleoprotein (NP) is an ideal target for antiviral drug development. Through Mini-genome and Surface Plasmon Resonance assays, this study discovered [...] Read more.
Influenza A virus (IAV) poses a major threat to global public health, exerting immense pressure on human health and the economy. The IAV nucleoprotein (NP) is an ideal target for antiviral drug development. Through Mini-genome and Surface Plasmon Resonance assays, this study discovered and verified that mycophenolic acid methyl ester (MAE), a secondary metabolite produced by the marine algal-associated fungus Phaeosphaeria spartinae, can target the viral nucleoprotein to exert anti-IAV activity. Pull-down assays and immunofluorescence have revealed that MAE blocks the nuclear import of viral ribonucleoprotein complexes (vRNP) by interfering with the interaction between NP and IMP-α. It also affects the vRNP assembly process by regulating NP oligomerization and the interaction between NP and PB2. In addition, Sandwich ELISA and Electron Microscopy experiments showed that MAE can also inactivate viral particles to reduce the risk of infection. Comprehensive research results indicate that MAE exerts its effects by inhibiting the viral NP protein, which has laid an important foundation for the development of marine-derived NP-targeted drugs. Full article
(This article belongs to the Special Issue Marine Compounds as Inhibitors)
Show Figures

Graphical abstract

Back to TopTop