Wear in Additive Manufacturing

A special issue of Lubricants (ISSN 2075-4442).

Deadline for manuscript submissions: 15 March 2025 | Viewed by 4092

Special Issue Editors


E-Mail Website
Guest Editor
School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
Interests: wear mechanism; wear models; friction theories

E-Mail Website
Guest Editor
State Key Laboratory of Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Interests: laser powder bed fusion in additive manufacturing; strengthening and toughening mechanism; mechanical property

Special Issue Information

Dear Colleagues,

Products made through additive manufacturing have attracted great attention in engineering and healthcare contexts and society as a whole. Wear is one of the most common failure modes of products fabricated through additive manufacturing, which raises concerns about their safety and reliability.

The materials, structures, and processing involved in additive manufacturing have a profound influence on their wear behavior. We need to gain more knowledge of wear fundamentals, wear mechanisms, wear modes, and the influence of the surface finish and microstructures of additively manufactured products. This Special Issue aims to gather deeper knowledge of the wear failure of additively manufactured products, which covers aspects related to wear modeling and validation, wear testing methods, etc. These studies will enable the development of future additively manufactured products with improved wear properties.

Dr. Xiangjun Jiang
Dr. Zhen Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Lubricants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • modeling and validation of wear in additive manufacturing
  • wear-resistant materials, coatings, or surface treatments produced through additive manufacturing
  • relationships between additive manufacturing materials, structures, and processing and their wear behaviors
  • wear testing methods in additive manufacturing
  • lubricant properties for wear in additive manufacturing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 1552 KiB  
Article
The Anisotropic Mechanical and Tribological Behaviors of Additively Manufactured (Material Extrusion) Implant-Grade Polyether Ether Ketone (PEEK)
by Mohammad Reza Maydanshahi, Mohammad Reza Najari, Tom Slatter and Mahdi Mohammadpour
Lubricants 2024, 12(10), 347; https://doi.org/10.3390/lubricants12100347 - 12 Oct 2024
Viewed by 793
Abstract
In this study, we investigated the mechanical and tribological properties of the layer-by-layer structure of additively manufactured implant-grade Polyether Ether Ketone (PEEK) through the Material Extrusion (ME) process as a potential substitute for artificial joints. The effective elasticity modulus of the anisotropic 3D-printed [...] Read more.
In this study, we investigated the mechanical and tribological properties of the layer-by-layer structure of additively manufactured implant-grade Polyether Ether Ketone (PEEK) through the Material Extrusion (ME) process as a potential substitute for artificial joints. The effective elasticity modulus of the anisotropic 3D-printed PEEK was determined to be 2.505 GPa along the vertical and horizontal build orientations. The lubricated friction and wear performance were assessed using a pin-on-disk test under various loads, including 14, 30, 50, and 70 N, with a sliding speed of 50 mm/s over a total distance of 1 km at 37 °C. The contact parameters between the hemispherical steel pin and 3D-printed PEEK disks, involving contact pressures over the circle of contact, were observed to increase as the load increased. The results indicated that the wear coefficient exhibited a rise from 1.418 × 105 to 2.089 × 101  as the applied loads increased, signaling a shift from mild to severe wear regimes. Fetal Bovine Serum (FBS) as a lubricant exhibited a mixed mechanism, ascertained through the Stribeck curve, as well as a minimum fluid film thickness of 1.346 nm under an isoviscous–elastic regime, as calculated by the maximum load. Moreover, the mechanism governing wear during sliding, influenced by both normal axial and shear loads, primarily involved adhesion. Full article
(This article belongs to the Special Issue Wear in Additive Manufacturing)
Show Figures

Figure 1

17 pages, 4518 KiB  
Article
Optimization of Fused Filament Fabrication for High-Performance Polylactic Acid Parts under Wear Conditions
by Moises Batista, Magdalena Ramirez-Peña, Jorge Salguero and Juan Manuel Vazquez-Martinez
Lubricants 2024, 12(8), 281; https://doi.org/10.3390/lubricants12080281 - 6 Aug 2024
Viewed by 905
Abstract
This paper investigates the impact of various manufacturing parameters on the mechanical and tribological properties of high-performance PLA (polylactic acid) parts produced using Fused Filament Fabrication (FFF). It addresses the challenges associated with optimizing additive manufacturing processes, particularly for polymer-based materials, and emphasizes [...] Read more.
This paper investigates the impact of various manufacturing parameters on the mechanical and tribological properties of high-performance PLA (polylactic acid) parts produced using Fused Filament Fabrication (FFF). It addresses the challenges associated with optimizing additive manufacturing processes, particularly for polymer-based materials, and emphasizes the importance of understanding how factors such as build orientation, layer thickness, and infill density influence the final properties of the printed parts. This study highlights the improvements that can be achieved by incorporating reinforcements such as carbon fibers and graphene nanoplatelets into PLA, enhancing its mechanical strength and wear resistance. Experimental results show that optimizing printing parameters can significantly reduce the coefficient of friction and wear, leading to better performance in applications involving movement and mechanical stress. Key findings include the observation that higher infill densities and specific build orientations improve the fatigue life and tensile strength of PLA parts. Additionally, post-printing thermal treatments can alleviate internal stresses and enhance interlayer adhesion, further improving mechanical properties. The article concludes that with proper optimization, high-performance PLA can be a viable material for industrial applications, offering both environmental benefits and enhanced performance. Full article
(This article belongs to the Special Issue Wear in Additive Manufacturing)
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 1732 KiB  
Review
A Review of Wear in Additive Manufacturing: Wear Mechanism, Materials, and Process
by Xiangjun Jiang, Juntao Lu, Na Zhao, Zhen Chen and Zhiming Zhao
Lubricants 2024, 12(9), 321; https://doi.org/10.3390/lubricants12090321 - 17 Sep 2024
Cited by 1 | Viewed by 1865
Abstract
In fields such as industrial engineering and healthcare, additive manufacturing technology is a focal point for researchers. Wear represents a significant challenge for additive manufacturing technology, increasingly emerging as a research hotspot in recent years. This review categorizes and summarizes wear issues in [...] Read more.
In fields such as industrial engineering and healthcare, additive manufacturing technology is a focal point for researchers. Wear represents a significant challenge for additive manufacturing technology, increasingly emerging as a research hotspot in recent years. This review categorizes and summarizes wear issues in additive manufacturing technology, providing a comprehensive overview of wear mechanisms, materials, and the effects of additive manufacturing processes on wear. Research indicates that different wear mechanisms result in varying wear characteristics. The inherent properties of the materials significantly influence wear during the manufacturing process. Modifying material compositions and optimizing microstructures can enhance the wear properties of additive manufacturing products. Additionally, the study of additive manufacturing technology in repair and maintenance is a current and anticipated research hotspot for the coming decades. In the research of additive manufacturing processes, the effective regulation of process parameters and their post-processing play a positive role in enhancing the wear characteristics of products produced via additive manufacturing. Lastly, the challenges and recent advancements concerning wear issues in the field of additive manufacturing technology research are summarized. Full article
(This article belongs to the Special Issue Wear in Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop