Advances in Marine Geomechanics and Geotechnics

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Ocean Engineering".

Deadline for manuscript submissions: 10 April 2026 | Viewed by 1078

Special Issue Editor


E-Mail Website
Guest Editor
School of Qilu Transportation, Shandong University, Jinan 250002, China
Interests: geo-risk assessment/reliability analysis; offshore engineering; spatial variability of soil; computational geotechnics; machine learning in geotechnics; in situ instrumentation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the latest developments in marine geomechanics and offshore geotechnics, with a strong emphasis on innovative and sustainable engineering solutions. It encompasses a broad range of topics, from advanced offshore site investigation using remote sensing and robotics to the assessment of geohazards and seismic risks, as well as the characterization of social spatial variability and its influence on offshore structures.

The Issue will feature state-of-the-art research on numerical modelling, centrifuge modelling, 1-g laboratory testing, and real-scale field experiments, which are employed to investigate complex soil–structure interactions in various offshore foundations. Specific areas of interest include monopile–soil and anchor–soil interactions, subsea pipelines, suction caissons, spudcans, and novel foundations to support offshore structures.

In addition, contributions addressing geotechnical risk and reliability analysis, the effects of dynamic and cyclic loading, scour phenomena, and the decommissioning of offshore infrastructure are welcome. The Special Issue will also explore emerging topics such as the application of machine learning in geotechnics, environmental impacts, and the challenges associated with carbon capture and storage, offshore mining, and cold-regions geotechnics, providing a comprehensive overview of life-cycle performance.

The aim of this Special Issue is to publish high-quality research on these topics and to make the findings freely available for research, teaching, and reference purposes.

Prof. Dr. Kai Yao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • numerical modelling
  • soil–structure interaction
  • centrifuge modelling
  • geotechnical risk and reliability analysis
  • spatial variability of soil
  • remote sensing and robotics
  • laboratory modelling
  • seismic and liquefaction analysis
  • machine learning in geotechnics
  • instrumentation and monitoring

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 8740 KB  
Article
Application of Multi-Station High-Frequency Microtremor Surface Wave Exploration in Coastal Engineering Research: A Case Study of Dongzhou Peninsula in Fujian Province
by Fei Cheng, Daicheng Peng, Daohuang Yang and Jiangping Liu
J. Mar. Sci. Eng. 2025, 13(12), 2364; https://doi.org/10.3390/jmse13122364 - 12 Dec 2025
Viewed by 214
Abstract
This study proposes a multi-station high-frequency microtremor surface-wave exploration method for high-resolution characterization of shallow subsurface structures in coastal engineering environments. Three representative layered geological models were established, and Rayleigh-wave theoretical dispersion curves were calculated using a fast vector transfer algorithm to analyze [...] Read more.
This study proposes a multi-station high-frequency microtremor surface-wave exploration method for high-resolution characterization of shallow subsurface structures in coastal engineering environments. Three representative layered geological models were established, and Rayleigh-wave theoretical dispersion curves were calculated using a fast vector transfer algorithm to analyze dispersion characteristics associated with different stratigraphic conditions. Five array geometries were then employed to acquire high-frequency ambient-noise data, and dispersion curves were extracted using the Extended Spatial Autocorrelation (ESPAC) method. Comparative analysis revealed that the rectangular, triangular, and circular arrays provided the most stable and accurate dispersion imaging, with mismatch errors below 0.5%, and their inverted S-wave velocity structures closely matched theoretical models. Field application on the Dongzhou Peninsula in Fujian Province further demonstrated the effectiveness of the proposed method. The inverted shear-wave (S-wave) velocity profiles from three survey lines successfully delineated the original and reclaimed coastlines, showing strong agreement with known geological boundaries. These results demonstrate that the proposed approach provides a non-invasive, cost-effective, and high-resolution tool for evaluating geological conditions in coastal engineering settings. It shows substantial potential for broader application in coastal site characterization and marine engineering development. Full article
(This article belongs to the Special Issue Advances in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

15 pages, 10241 KB  
Article
Effect of Fine Content on Liquefaction Resistance of Saturated Marine Sandy Soils Subjected to Cyclic Loading
by Shang Gao, Wenwen Zhang, Qi Wu and Shuanglan Wu
J. Mar. Sci. Eng. 2025, 13(12), 2333; https://doi.org/10.3390/jmse13122333 - 8 Dec 2025
Viewed by 162
Abstract
Offshore wind turbines are subjected to environmental loads such as wind and ocean waves throughout their entire service lives. Saturated sandy soils experience liquefaction under cyclic shear stresses induced by earthquakes or strong wave actions, which can result in the tilting, settlement, or [...] Read more.
Offshore wind turbines are subjected to environmental loads such as wind and ocean waves throughout their entire service lives. Saturated sandy soils experience liquefaction under cyclic shear stresses induced by earthquakes or strong wave actions, which can result in the tilting, settlement, or even overturning of structures. This study investigates the effect of fine content (FC) on the liquefaction resistance (CRR) of saturated sandy soils with different density states. Sandy soils with varying FC values are examined under three scenarios: (1) constant relative density; (2) constant void ratio; and (3) constant skeleton void ratio. A series of undrained cyclic triaxial tests are conducted on sandy soils with different FC and density states (Dr, e, and esk). The results indicate that an increase in FC leads to a decrease in CRR at constant Dr or e, whereas CRR at constant esk increases with increasing FC. No clear correlation is observed between Dr, e, or esk and CRR for saturated sandy soils with varying FC. Since esk does not account for the effect of fine particles on the contact state of skeleton particles, the equivalent skeleton void ratio (esk*) is introduced to describe the particle contact state of sandy soils with different fine contents (FCs), considering the degree of fine particle participation. In addition, the test data reveal that the CRR of sandy soils with different FC and density states decreases with increasing esk*, and a power relationship between the reduction in CRR and the increase in esk* is established. This finding indicates that esk*, which considers the proportion of fines contributing to the load-sustaining framework, serves as a reliable index for evaluating the CRR of various sandy soils. We find that grain shape plays a significant role in influencing CRR, and the overall CRR of sandy soils increases as the grain shape changes from spherical to angular, compared to the published test results for other sandy soils. Full article
(This article belongs to the Special Issue Advances in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

19 pages, 6474 KB  
Article
Experimental Investigation of a Novel Single-Shank Drag Anchor Design
by Chuheng Wu, Peng Guo, Youhu Zhang, Xiangyu Wang and Di Lei
J. Mar. Sci. Eng. 2025, 13(11), 2157; https://doi.org/10.3390/jmse13112157 - 14 Nov 2025
Viewed by 282
Abstract
Drag embedment anchor (DEA) constitutes a compelling anchoring solution for an array of floating structures, attributable to its exceptional efficiency in holding capacity and the comparatively modest expenditures incurred in manufacturing and installation. The holding capacity of DEAs is, to a large extent, [...] Read more.
Drag embedment anchor (DEA) constitutes a compelling anchoring solution for an array of floating structures, attributable to its exceptional efficiency in holding capacity and the comparatively modest expenditures incurred in manufacturing and installation. The holding capacity of DEAs is, to a large extent, dictated by the penetration depth achieved during installation. In hard soils, such as dense sand and stiff clay, the penetration depth of DEAs is often limited due to the large soil resistance acting on the shank structure, which in turn limits its holding capacity. In this paper, a novel anchor design with a single flat shank is proposed, which can greatly reduce the soil resistance on the shank during installation, in the hope of improving the penetration depth and consequently the holding capacity of DEAs. To verify this design assumption, a comprehensive suite of large deformation numerical simulations is carried out in both clayey and sandy soils. In addition, a series of physical model tests are performed in uniform sand. The results from both the numerical simulations and the model tests confirm the superior penetrability and holding capacity of the proposed single-shank anchor design. Full article
(This article belongs to the Special Issue Advances in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

Back to TopTop