Special Issue "Locusts and Grasshoppers: Biology, Ecology and Management"

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editor

Prof. Dr. Alexandre V. Latchininsky
Website
Guest Editor
Food and Agriculture Organization of the United Nations (FAO UN), 00153 Rome, Italy
Interests: locusts; population dynamics; management

Special Issue Information

Dear Colleagues,

Locusts and grasshoppers (Orthoptera: Acridoidea) are among the most serious agricultural pests worldwide. By inflicting damage to pasturelands and a wide range of crops they jeopardize food security and livelihoods of about ten percent of the world’s population. Their outbreaks, which in case of locusts can escalate to transcontinental plagues, require huge efforts of national plant protection agencies and international cooperation to control them. Being extremely adaptable to recent climate changes, locusts and grasshoppers present new challenges to researchers and pest managers. The current Special Issue addresses some of the newest insights biology, ecology and management of these ancient enemies of agriculturists.

Prof. Dr. Alexandre V. Latchininsky
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessCommunication
Plagues of Desert Locusts: Very Low Invasion Risk to China
Insects 2020, 11(9), 628; https://doi.org/10.3390/insects11090628 - 11 Sep 2020
Abstract
Recently, the most serious upsurge of the desert locust (Schistocerca gregaria) in the last 25 years is spreading across eastern Africa and southwestern Asia. Parts of the desert locust ‘invasion area’, namely the northern border areas of Pakistan and India, are [...] Read more.
Recently, the most serious upsurge of the desert locust (Schistocerca gregaria) in the last 25 years is spreading across eastern Africa and southwestern Asia. Parts of the desert locust ‘invasion area’, namely the northern border areas of Pakistan and India, are very close to China, and whether locust swarms will invade China is of wide concern. To answer this question, we identified areas of potentially suitable habitat for the desert locust within China based on historical precipitation and temperature data, and found that parts of Xinjiang and Inner Mongolia provinces could provide ephemeral habitat in summer, but these places are remote from any other desert locust breeding areas. New generation adults of the desert locust in Pakistan and India present since April led to swarms spreading into the Indo-Pakistan border region in June, and so we examined historical wind data for this period. Our results showed that winds at the altitude of locust swarm flight blew eastward during April–June, but the wind speeds were quite slow and would not facilitate desert locust eastward migration over large distances. Simulated trajectories of desert locust swarms undertaking 10-day migrations mostly ended within India. The most easterly point of these trajectories just reached eastern India, and this is very close to the eastern border of the invasion area of desert locusts described in previous studies. Overall, the risk that the desert locust will invade China is very low. Full article
(This article belongs to the Special Issue Locusts and Grasshoppers: Biology, Ecology and Management)
Show Figures

Figure 1

Open AccessArticle
ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images
Insects 2020, 11(8), 458; https://doi.org/10.3390/insects11080458 - 22 Jul 2020
Abstract
Locusts are agricultural pests found in many parts of the world. Developing efficient and accurate locust information acquisition techniques helps in understanding the relation between locust distribution density and structural changes in locust communities. It also helps in understanding the hydrothermal and vegetation [...] Read more.
Locusts are agricultural pests found in many parts of the world. Developing efficient and accurate locust information acquisition techniques helps in understanding the relation between locust distribution density and structural changes in locust communities. It also helps in understanding the hydrothermal and vegetation growth conditions that affect locusts in their habitats in various parts of the world as well as in providing rapid and accurate warnings on locust plague outbreak. This study is a preliminary attempt to explore whether the batch normalization-based convolutional neural network (CNN) model can be applied used to perform automatic classification of East Asian migratory locust (AM locust), Oxya chinensis (rice locusts), and cotton locusts. In this paper, we present a way of applying the CNN technique to identify species and instars of locusts using the proposed ResNet-Locust-BN model. This model is based on the ResNet architecture and involves introduction of a BatchNorm function before each convolution layer to improve the network’s stability, convergence speed, and classification accuracy. Subsequently, locust image data collected in the field were used as input to train the model. By performing comparison experiments of the activation function, initial learning rate, and batch size, we selected ReLU as the preferred activation function. The initial learning rate and batch size were set to 0.1 and 32, respectively. Experiments performed to evaluate the accuracy of the proposed ResNet-Locust-BN model show that the model can effectively distinguish AM locust from rice locusts (93.60% accuracy) and cotton locusts (97.80% accuracy). The model also performed well in identifying the growth status information of AM locusts (third-instar (77.20% accuracy), fifth-instar (88.40% accuracy), and adult (93.80% accuracy)) with an overall accuracy of 90.16%. This is higher than the accuracy scores obtained by using other typical models: AlexNet (73.68%), GoogLeNet (69.12%), ResNet 18 (67.60%), ResNet 50 (80.84%), and VggNet (81.70%). Further, the model has good robustness and fast convergence rate. Full article
(This article belongs to the Special Issue Locusts and Grasshoppers: Biology, Ecology and Management)
Show Figures

Figure 1

Open AccessArticle
Migratory Take-Off Behaviour of the Mongolian Grasshopper Oedaleus asiaticus
Insects 2020, 11(7), 416; https://doi.org/10.3390/insects11070416 - 04 Jul 2020
Abstract
Oedaleus asiaticus is one of the dominant species of grasshoppers in the rangeland on the Mongolian plateau, and a serious pest, but its migratory behavior is poorly known. We investigated the take-off behavior of migratory O. asiaticus in field cages in the inner [...] Read more.
Oedaleus asiaticus is one of the dominant species of grasshoppers in the rangeland on the Mongolian plateau, and a serious pest, but its migratory behavior is poorly known. We investigated the take-off behavior of migratory O. asiaticus in field cages in the inner Mongolia region of northern China. The species shows a degree of density-dependent phase polyphenism, with high-density swarming populations characterized by a brown morph, while low-density populations are more likely to comprise a green morph. We found that only 12.4% of brown morphs engaged in migratory take-off, and 2.0% of green morphs. Migratory grasshoppers took off at dusk, especially in the half hour after sunset (20:00–20:30 h). Most emigrating individuals did not have any food in their digestive tract, and the females were mated but with immature ovaries. In contrast, non-emigrating individuals rarely had empty digestive tracts, and most females were mated and sexually mature. Therefore, it seems clear that individuals prepare for migration in the afternoon by eliminating food residue from the body, and migration is largely restricted to sexually immature stages (at least in females). Furthermore, it was found that weather conditions (particularly temperature and wind speed at 15:00 h) in the afternoon had a significant effect on take-off that evening, with O. asiaticus preferring to take off in warm, dry and calm weather. The findings of this study will contribute to a reliable basis for forecasting migratory movements of this pest. Full article
(This article belongs to the Special Issue Locusts and Grasshoppers: Biology, Ecology and Management)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Locust Bacterial Symbionts: An Update
Insects 2020, 11(10), 655; https://doi.org/10.3390/insects11100655 - 24 Sep 2020
Abstract
As one of the world’s most infamous agricultural pests, locusts have been subjected to many in-depth studies. Their ability at one end of their behavioral spectrum to live as solitary individuals under specific conditions, and at the other end of the spectrum to [...] Read more.
As one of the world’s most infamous agricultural pests, locusts have been subjected to many in-depth studies. Their ability at one end of their behavioral spectrum to live as solitary individuals under specific conditions, and at the other end of the spectrum to form swarms of biblical scale, has placed them at the focus of vast research efforts. One important aspect of locust ecology is that of their interactions with the bacteria that reside in and on them. Although this aspect of locust ecology has been little studied relative to the mainstream locust research, these bacteria have been shown both to affect locust immunity and to participate in maintaining swarm integrity through the secretion of attractant volatiles. The interaction between locusts and their bacteria seems, however, to be bi-directional, with the bacteria themselves, as recently shown, being influenced by their host’s swarming tendencies. This seems to be a consequence of the bacterial composition in the locust’s gut, reproductive organs, and integument undergoing change with the change in their host’s behavior. In this review we describe the current state of knowledge of the locust–bacteria interactions (data exists mainly for the desert and the migratory locusts), as well as highlighting some newly-gained understanding; and offer perspectives for future research. Full article
(This article belongs to the Special Issue Locusts and Grasshoppers: Biology, Ecology and Management)
Show Figures

Figure 1

Open AccessReview
Control of Pest Grasshoppers in North America
Insects 2020, 11(9), 566; https://doi.org/10.3390/insects11090566 - 24 Aug 2020
Abstract
Grasshoppers (Orthoptera: Acrididae) frequently inflict damage on millions of hectares of western rangelands and crops. The main method of controlling grasshopper outbreaks consists of covering their infestations with chemical insecticides. Although it is relatively cheap, fast, and efficient, chemical control bears serious risks [...] Read more.
Grasshoppers (Orthoptera: Acrididae) frequently inflict damage on millions of hectares of western rangelands and crops. The main method of controlling grasshopper outbreaks consists of covering their infestations with chemical insecticides. Although it is relatively cheap, fast, and efficient, chemical control bears serious risks to human health, non-target organisms, and the environment. To overcome this challenge, biological control is a less environmentally hazardous alternative to traditional, synthetic insecticides. This paper reviews strategies that could be used as effective ways to control such pests with a special focus on effective bait formulations that might provide a key model in developing biological control strategies for the grasshopper population. Full article
(This article belongs to the Special Issue Locusts and Grasshoppers: Biology, Ecology and Management)
Show Figures

Figure 1

Back to TopTop