Geochronology and Chemostratigraphy of Quaternary Environment

A special issue of Geosciences (ISSN 2076-3263). This special issue belongs to the section "Geochemistry".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 2867

Special Issue Editors


E-Mail Website
Guest Editor
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, 1112 Budapest, Hungary
Interests: environment and climate change; biogeochemistry; environmental isotopes; dendroclimatology; quaternary geochronology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem u. 2-6., 6722 Szeged, Hungary
Interests: geochronology; geomorphology; quaternary research; climate change; natural hazards
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

When defining the chronological frameworks for changes found in various environmental (such as chemical composition, pollen assemblage, macrofossils, etc.) archives derived along sedimentary profiles and linking them to well- (or less well-) known events from history of the environment and of humans, numerical age estimation is essential.

There are principally two different approaches applied for quaternary archives to obtain numerical ages. Incremental (or sometimes called sidereal) methods, such as dendrochronology, sclerochronology, and varve dating, rely on counting of annual/seasonal deposition units. Radiometric techniques are based on either the counting of the members of a radioactive decay chain or quantifying the effects of environmental radiation on a sample exposed to radiation. Sedimentary deposits are among the most valuable sources of paleoenvironmental information. Assuming that radiometric techniques are used to assign ages to certain levels (reference horizons) along a sedimentary profile, an additional necessary step is to develop a model to assign an estimated age to the levels in between the reference horizons, or even out of their range, if needed.

Advancements in dating techniques allow for setting up higher resolution chronologies than ever. Meanwhile, due to instrumental developments, the circle of geochemical proxy information that can be applied in some way to grab paleoenvironmental changes has greatly expanded too, opening new horizons in the reconstruction of the past.

This Special Issue invites contributions, without restriction, regarding geographical regions and that analyze methodological problems or present case studies of the application of quaternary dating techniques or geochemical analyses on any types of environmental archives. Research synthesizing results obtained using multiple quaternary dating methods and geochemical analyses are particularly welcome. The volume also invites studies dealing with age-depth modeling and high-resolution sampling.

Dr. Zoltán Kern
Dr. György Sipos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • numerical ages
  • radiometric methods
  • radiogenic methods
  • annual increments
  • age-depth modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 8388 KiB  
Article
Updated Chronology of the Last Deglaciation in the Făgăraş Mts (Romania)
by Zoltán Kern, Petru Urdea, Mircea Ardelean, ASTER Team and Zsófia Ruszkiczay-Rüdiger
Geosciences 2025, 15(3), 109; https://doi.org/10.3390/geosciences15030109 - 18 Mar 2025
Viewed by 298
Abstract
So far, published geochronological data poorly constrain the Late Pleistocene glacial fluctuations in the Făgăraş Mts (Southern Carpathians, Romania). The deglaciation chronology in the central Făgăraş Mts is supported by new (n = 5) and recalculated (n = 5) 10Be [...] Read more.
So far, published geochronological data poorly constrain the Late Pleistocene glacial fluctuations in the Făgăraş Mts (Southern Carpathians, Romania). The deglaciation chronology in the central Făgăraş Mts is supported by new (n = 5) and recalculated (n = 5) 10Be exposure ages from a southern and two northern valleys. Cosmic ray exposure (CRE) ages were calculated considering the effects of surface denudation, uplift and snow-shielding. A 10Be exposure age obtained from a glacial landform representing the last glacierets of the central Făgăraş Mts yielded an age of 13.3 ± 1.2 ka. A polished bedrock sample and a moraine boulder constrain the age of a cirque glacier stage to 14.5 ± 1.5 ka, while quite coherent CRE ages from two erratic boulders place the previous stage at ~18.7 ka (18.6 ± 1.7 ka and 18.7 ± 1.7 ka). These glacial stages coincide with major deglaciation stages M4 and M2a reconstructed in the Retezat Mts, derived from comparable CRE ages calculated using the same methodology; however, geomorphological and/or geochronological evidence of the intermediate stages is still not found in the central Făgăraş Mts. All CRE ages gathered from the landforms corresponding to the more extended glacial stages are younger than expected from their morphostratigraphic position and thus considered as minimum age constraints. However, considering the coherent CRE ages of the above morphostratigraphic stage, it is likely that the balanced-budget glaciological conditions corresponding to these more extended stages prevailed before ~19 ka and likely coincided with the cold peaks of the Marine Isotope Stage 2. The currently available in situ 10Be data do not support the existence of a period of glacier advance during the Holocene or Greenland Stadial-1 (Younger Dryas) in the central Făgăraş Mts. Full article
(This article belongs to the Special Issue Geochronology and Chemostratigraphy of Quaternary Environment)
Show Figures

Figure 1

15 pages, 3756 KiB  
Article
Absolute Dating of Fault-Gouge Material Using Isothermal Thermoluminescence: An Example from the Nojima Fault Zone, SW Japan
by Evangelos Tsakalos, Eleni Filippaki, Aiming Lin, Maria Kazantzaki, Takafumi Nishiwaki and Yannis Bassiakos
Geosciences 2024, 14(4), 99; https://doi.org/10.3390/geosciences14040099 - 4 Apr 2024
Cited by 1 | Viewed by 1859
Abstract
Establishing the absolute age of palaeoearthquakes is of great significance for the assessment of the seismicity and seismic hazards of a region. As such, several different geochronological techniques to date earthquake-related material have been developed to provide answers on the time of past [...] Read more.
Establishing the absolute age of palaeoearthquakes is of great significance for the assessment of the seismicity and seismic hazards of a region. As such, several different geochronological techniques to date earthquake-related material have been developed to provide answers on the time of past earthquakes. The present study is part of a wider palaeoseismic research project conducted in the Nojima Fault Zone (NFZ), where the 1995 Mw 6.9 Kobe (Japan) earthquake was triggered, to assess the suitability of the isothermal thermoluminescence (ITL) dating technique on fine-grained quartz and medium-grained feldspar and to provide a sequence of ages for fault-rock samples separated from a drilled core that was retrieved from a depth of ~506 m. Our analysis reveals that ITL can produce consistent dating results and can be considered a reliable luminescence technique for the absolute dating of fault-gouge material. The produced ITL ages signified the existence of repeated seismic events within the NFZ that took place through the late Pleistocene period, with gouge ages spanning from 78.6 ± 4.2 to 13.4 ± 1.4 ka; however, overestimation of the produced ITL dating results may be apparent. Nonetheless, even though some degree of overestimation is considered, ITL dating results denote the oldest possible age boundary of formation (or luminescence signal resetting) of the collected fault-gouge layers. Full article
(This article belongs to the Special Issue Geochronology and Chemostratigraphy of Quaternary Environment)
Show Figures

Figure 1

Back to TopTop