Absolute Dating of Fault-Gouge Material Using Isothermal Thermoluminescence: An Example from the Nojima Fault Zone, SW Japan
Abstract
:1. Introduction
2. Geologic Setting and Collection of Samples
3. Materials and Methods
3.1. Sample Preparation and Measurement Facilities
3.2. Luminescence Measurements
3.2.1. Measurement Temperature
3.2.2. Dose-Recovery Test
3.3. Dose-Rate Determination
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, D.; Temming, H. Testing Heated Flint Palaeodose Protocols Using Dose Recovery Procedures. Radiat. Meas. 2006, 41, 819–825. [Google Scholar] [CrossRef]
- Jain, M.; Bøtter-Jensen, L.; Murray, A.S.; Denby, P.M.; Tsukamoto, S.; Gibling, M.R. Revisiting TL: Dose Measurement beyond the OSL Range Using SAR. Anc. TL 2005, 23, 9–24. [Google Scholar]
- Jain, M.; Bøtter-Jensen, L.; Murray, A.S.; Essery, R. A Peak Structure in Isothermal Luminescence Signals in Quartz: Origin and Implications. J. Lumin. 2007, 127, 678–688. [Google Scholar] [CrossRef]
- Jain, M.; Duller, G.A.T.; Wintle, A.G. Dose Response, Thermal Stability and Optical Bleaching of the 310 °C Isothermal TL Signal in Quartz. Radiat. Meas. 2007, 42, 1285–1293. [Google Scholar] [CrossRef]
- Choi, J.H.; Murray, A.S.; Cheong, C.-S.; Hong, D.G.; Chang, H.W. Estimation of Equivalent Dose Using Quartz Isothermal TL and the SAR Procedure. Quat. Geochronol. 2006, 1, 101–108. [Google Scholar] [CrossRef]
- Gibling, M.R.; Tandon, S.K.; Sinha, R.; Jain, M. Discontinuity-Bounded Alluvial Sequences of the Southern Gangetic Plains, India: Aggradation and Degradation in Response to Monsoonal Strength. J. Sediment. Res. 2005, 75, 369–385. [Google Scholar] [CrossRef]
- Tsakalos, E.; Dimitriou, E.; Kazantzaki, M.; Anagnostou, C.; Christodoulakis, J.; Filippaki, E. Testing Optically Stimulated Luminescence Dating on Sand-Sized Quartz of Deltaic Deposits from the Sperchios Delta Plain, Central Greece. J. Palaeogeogr. 2018, 7, 130–145. [Google Scholar] [CrossRef]
- Singhvi, A.K.; Banerjee, D.; Pande, K.; Gogte, V.; Valdiya, K.S. Luminescence Studies on Neotectonic Events in South-Central Kumaun Himalaya—A Feasibility Study. Quat. Sci. Rev. 1994, 13, 595–600. [Google Scholar] [CrossRef]
- Ding, Y.Z.; Lai, K.W. Neotectonic Fault Activity in Hong Kong: Evidence from Seismic Events and Thermoluminescence Dating of Fault Gouge. JGS 1997, 154, 1001–1007. [Google Scholar] [CrossRef]
- Banerjee, D.; Singhvi, A.K.; Pande, K.; Gogte, V.D.; Chandra, B.P. Towards a Direct Dating of Fault Gouges Using Luminescence Dating Techniques—Methodological Aspects. Curr. Sci. 1999, 77, 256–268. [Google Scholar]
- Mukul, M.; Jaiswal, M.; Singhvi, A.K. Timing of Recent Out-of-Sequence Active Deformation in the Frontal Himalayan Wedge: Insights from the Darjiling Sub-Himalaya, India. Geology 2007, 35, 999. [Google Scholar] [CrossRef]
- Spencer, J.Q.G.; Hadizadeh, J.; Gratier, J.-P.; Doan, M.-L. Dating Deep? Luminescence Studies of Fault Gouge from the San Andreas Fault Zone 2.6 km beneath Earth’s Surface. Quat. Geochronol. 2012, 10, 280–284. [Google Scholar] [CrossRef]
- Ganzawa, Y.; Takahashi, C.; Miura, K.; Shimizu, S. Dating of Active Fault Gouge Using Optical Stimulated Luminescence and Thermoluminescence. Jour. Geol. Soc. Jpn. 2013, 119, 714–726. [Google Scholar] [CrossRef]
- Odlum, M.L.; Rittenour, T.; Ault, A.K.; Nelson, M.; Ramos, E.J. Investigation of Quartz Luminescence Properties in Bedrock Faults: Fault Slip Processes Reduce Trap Depths, Lifetimes, and Sensitivity. Radiat. Meas. 2022, 155, 106784. [Google Scholar] [CrossRef]
- Lin, A.; Nishiwaki, T. Repeated Seismic Slipping Events Recorded in a Fault Gouge Zone: Evidence from the Nojima Fault Drill Holes, SW Japan. Geophys. Res. Lett. 2019, 46, 1276–1283. [Google Scholar] [CrossRef]
- Tsakalos, E.; Lin, A.; Kazantzaki, M.; Bassiakos, Y.; Nishiwaki, T.; Filippaki, E. Absolute Dating of Past Seismic Events Using the OSL Technique on Fault Gouge Material—A Case Study of the Nojima Fault Zone, SW Japan. JGR Solid Earth 2020, 125, e2019JB019257. [Google Scholar] [CrossRef]
- Research Group for Active Faults of Japan (RGAFJ). Active Faults in Japan-Sheet Maps and Inventories (Revised Edition); University of Tokyo Press: Tokyo, Japan, 1991; p. 437. [Google Scholar]
- Ian, A.; Uda, S. Morphological Characteristics of the Earthquake Surface Ruptures on Awaji Island, Associated with the 1995 Southern Hyogo Prefecture Earthquake. Isl. Arc. 1996, 5, 1–15. [Google Scholar] [CrossRef]
- Lin, A. Late Pleistocene-Holocene Activity and Paleoseismicity of the Nojima Fault in the Northern Awaji Island, Southwest Japan. Tectonophysics 2018, 747–748, 402–415. [Google Scholar] [CrossRef]
- Mizuno, K.; Hattori, H.; Sangawa, A.; Takahashi, Y. Geology of the Akashi District; Geological Survey of Japan: Tsukuba, Japan, 1990; 90p. [Google Scholar]
- Sawakuchi, A.O.; Mendes, V.R.; Pupim, F.D.N.; Mineli, T.D.; Ribeiro, L.M.A.L.; Zular, A.; Guedes, C.C.F.; Giannini, P.C.F.; Nogueira, L.; Sallun Filho, W.; et al. Optically Stimulated Luminescence and Isothermal Thermoluminescence Dating of High Sensitivity and Well Bleached Quartz from Brazilian Sediments: From Late Holocene to beyond the Quaternary? Braz. J. Geol. 2016, 46, 209–226. [Google Scholar] [CrossRef]
- Takeuchi, A.; Nagahama, H.; Hashimoto, T. Surface Resetting of Thermoluminescence in Milled Quartz Grains. Radiat. Meas. 2006, 41, 826–830. [Google Scholar] [CrossRef]
- Buylaert, J.P.; Murray, A.S.; Huot, S.; Vriend, M.G.A.; Vandenberghe, D.; De Corte, F.; Van den haute, P. A Comparison of Quartz OSL and Isothermal TL Measurements on Chinese Loess. Radiat. Prot. Dosim. 2006, 119, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Huot, S.; Buylaert, J.-P.; Murray, A.S. Isothermal Thermoluminescence Signals from Quartz. Radiat. Meas. 2006, 41, 796–802. [Google Scholar] [CrossRef]
- Tribolo, C.; Mercier, N. Toward a SAR-ITL Protocol for the Equivalent Dose Estimate of Burnt Quartzites. Anc. TL 2012, 30, 17–25. [Google Scholar]
- Mejdahl, V.; Bøtter-Jensen, L. Luminescence Dating of Archaeological Materials Using a New Technique Based on Single Aliquot Measurements. Quat. Sci. Rev. 1994, 13, 551–554. [Google Scholar] [CrossRef]
- Huntley, D.J.; Baril, M.R. The K Content of the K-Feldspars Being Measured in Optical Dating or in Thermoluminescence Dating. Anc. TL 1997, 15, 11–13. [Google Scholar]
- Huntley, D.J.; Hancock, R.G.V. The Rb Contents of the K-Feldspars Being Measured in Optical Dating. Anc. TL 2001, 19, 43–46. [Google Scholar]
- Zhao, H.; Li, S.-H. Internal Dose Rate to K-Feldspar Grains from Radioactive Elements Other than Potassium. Radiat. Meas. 2005, 40, 84–93. [Google Scholar] [CrossRef]
- Li, B.; Li, S.-H.; Wintle, A. Overcoming Environmental Dose Rate Changes in Luminescence Dating of Waterlain Deposits. Geochronometria 2008, 30, 33–40. [Google Scholar] [CrossRef]
- Mejdahl, V. Internal Radioactivity in Quartz and Feldspar Grains. Anc. TL 1987, 5, 10–17. [Google Scholar]
- Buylaert, J.-P.; Huot, S.; Murray, A.S.; Van Den Haute, P. Infrared Stimulated Luminescence Dating of an Eemian (MIS 5e) Site in Denmark Using K-Feldspar: IRSL Dating of an Eemian Site Using K-Feldspar. Boreas 2011, 40, 46–56. [Google Scholar] [CrossRef]
- Sohbati, R.; Murray, A.S.; Buylaert, J.-P.; Ortuño, M.; Cunha, P.P.; Masana, E. Luminescence Dating of Pleistocene Alluvial Sediments Affected by the Alhama de Murcia Fault (Eastern Betics, Spain)—A Comparison between OSL, IRSL and Post-IRIRSL Ages: Luminescence Dating of Pleistocene Alluvial Sediments. Boreas 2012, 41, 250–262. [Google Scholar] [CrossRef]
- Tsakalos, E.; Christodoulakis, J.; Charalambous, L. The Dose Rate Calculator (DRc) for Luminescence and ESR Dating-a Java Application for Dose Rate and Age Determination: The Dose Rate Calculator (DRc). Archaeometry 2016, 58, 347–352. [Google Scholar] [CrossRef]
- Stokes, S.; Ingram, S.; Aitken, M.J.; Sirocko, F.; Anderson, R.; Leuschner, D. Alternative Chronologies for Late Quaternary (Last Interglacial–Holocene) Deep Sea Sediments via Optical Dating of Silt-Sized Quartz. Quat. Sci. Rev. 2003, 22, 925–941. [Google Scholar] [CrossRef]
- Lai, Z.P.; Zöller, L.; Fuchs, M.; Brückner, H. Alpha Efficiency Determination for OSL of Quartz Extracted from Chinese Loess. Radiat. Meas. 2008, 43, 767–770. [Google Scholar] [CrossRef]
- Balescu, S.; Ritz, J.-F.; Lamothe, M.; Auclair, M.; Todbileg, M. Luminescence Dating of a Gigantic Palaeolandslide in the Gobi-Altay Mountains, Mongolia. Quat. Geochronol. 2007, 2, 290–295. [Google Scholar] [CrossRef]
- Krbetschek, M.R.; Rieser, U.; Zöller, L.; Heinicke, J. Radioactive Disequilibria in Palaeodosimetric Dating of Sediments. Radiat. Meas. 1994, 23, 485–489. [Google Scholar] [CrossRef]
- Olley, J.M.; Murray, A.; Roberts, R.G. The Effects of Disequilibria in the Uranium and Thorium Decay Chains on Burial Dose Rates in Fluvial Sediments. Quat. Sci. Rev. 1996, 15, 751–760. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G.; Laslett, G.M.; Yoshida, H.; Olley, J.M. Optical Dating of Single and Multiple Grains of Quartz from Jinmium Rock Shelter, Northern Australia: Part I, Experimental Design and Statistical Models. Archaeometry 1999, 41, 339–364. [Google Scholar] [CrossRef]
- Wintle, A.G.; Murray, A.S. A Review of Quartz Optically Stimulated Luminescence Characteristics and Their Relevance in Single-Aliquot Regeneration Dating Protocols. Radiat. Meas. 2006, 41, 369–391. [Google Scholar] [CrossRef]
Step | Treatment |
---|---|
1 | Give dose, Di (1) |
2 | Heat to 310 °C, hold for 300 s |
3 | Give test dose, Dt (2) |
4 | Heat to 310 °C, hold for 300 s |
5 | Return to step 1 |
Sample ID | Material | Grain Size (μm) | U (ppm) | Th (ppm) | K (wt %) | Rb (ppm) | Water (wt%) | Dose Rate (Gy/ka) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
External | α | β | γ | Total Dose Rate | |||||||
NFD-1-S1-②-G-06 (a) | Gouge/quartz | 4–11 | 4.3 | 11 | 2.7 | 122.2 | 7.3 | 0.63 ± 0.23 | 2.86 ± 0.21 | 1.55 ± 0.09 | 5.03 ± 0.32 |
NFD-1-S1-②-G-06 (b) | Gouge/feldspar | 80–125 | 4.3 | 11 | 2.7 | 122.2 | 7.3 | 0.19 ± 0.06 | 3.22 ± 0.24 | 1.55 ± 0.09 | 4.95 ± 0.25 |
NFD-1-S1-②-G-08 (a) | Gouge/quartz | 4–11 | 3.2 | 10.1 | 2.92 | 122.1 | 13 | 0.47 ± 0.17 | 2.67 ± 0.21 | 1.35 ± 0.08 | 4.5 ± 0.28 |
NFD-1-S1-②-G-08 (b) | Gouge/feldspar | 80–125 | 3.2 | 10.1 | 2.92 | 122.1 | 13 | 0.17 ± 0.06 | 3.07 ± 0.23 | 1.35 ± 0.08 | 4.6 ± 0.25 |
NFD-1-S1-②-G-11 (b) | Gouge/feldspar | 80–125 | 3.7 | 11.4 | 2.93 | 132.2 | 16 | 0.18 ± 0.06 | 3.08 ± 0.23 | 1.42 ± 0.09 | 4.67 ± 0.25 |
NFD-1-S1-②-G-12 (a) | Gouge/quartz | 4–11 | 3.4 | 10.9 | 3.04 | 134.2 | 10 | 0.53 ± 0.19 | 2.88 ± 0.22 | 1.47 ± 0.09 | 4.88 ± 0.31 |
NFD-1-S1-②-G-12 (b) | Gouge/feldspar | 80–125 | 3.4 | 10.9 | 3.04 | 134.2 | 10 | 0.18 ± 0.06 | 3.27 ± 0.24 | 1.47 ± 0.09 | 4.93 ± 0.26 |
Sample ID | Material | Mineral Used | Grain Size (μm) | n of Aliquots | DE (Gy) | Overdispersion (%) | Dr (Gy/ka) | Age (ka) |
---|---|---|---|---|---|---|---|---|
NFD-1-S1-②-G-06 | Gouge | Quartz | 4–11 | 15 | 337.48 ± 7.31 | 5.6 | 5.03 ± 0.32 | 67.09 ± 4.51 |
NFD-1-S1-②-G-06 | Gouge | Feldspar | 80–125 | 18 | 389.05 ± 5.91 | 0 | 4.95 ± 0.25 | 78.6 ± 4.15 |
NFD-1-S1-②-G-08 | Gouge | Quartz | 4–11 | 18 | 130.12 ± 3.4 | 8.6 | 4.5 ± 0.28 | 28.92 ± 1.95 |
NFD-1-S1-②-G-08 (a) | Gouge | Feldspar | 80–125 | 32 | 155.15 ± 10.01 | 0 | 4.67 ± 0.25 | 33.22 ± 2.79 |
NFD-1-S1-②-G-11 (a) | Gouge | Feldspar | 80–125 | 32 | 66.15 ± 5.93 | 22.23 | 4.93 ± 0.26 | 13.42 ± 1.4 |
NFD-1-S1-②-G-12 | Gouge | Quartz | 4–11 | 16 | 77.57 ± 3.35 | 16.1 | 4.42 ± 0.28 | 17.55 ± 1.35 |
NFD-1-S1-②-G-12 (a) | Gouge | Feldspar | 80–125 | 32 | 121.53 ± 8.06 | 0 | 4.6 ± 0.25 | 26.42 ± 2.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakalos, E.; Filippaki, E.; Lin, A.; Kazantzaki, M.; Nishiwaki, T.; Bassiakos, Y. Absolute Dating of Fault-Gouge Material Using Isothermal Thermoluminescence: An Example from the Nojima Fault Zone, SW Japan. Geosciences 2024, 14, 99. https://doi.org/10.3390/geosciences14040099
Tsakalos E, Filippaki E, Lin A, Kazantzaki M, Nishiwaki T, Bassiakos Y. Absolute Dating of Fault-Gouge Material Using Isothermal Thermoluminescence: An Example from the Nojima Fault Zone, SW Japan. Geosciences. 2024; 14(4):99. https://doi.org/10.3390/geosciences14040099
Chicago/Turabian StyleTsakalos, Evangelos, Eleni Filippaki, Aiming Lin, Maria Kazantzaki, Takafumi Nishiwaki, and Yannis Bassiakos. 2024. "Absolute Dating of Fault-Gouge Material Using Isothermal Thermoluminescence: An Example from the Nojima Fault Zone, SW Japan" Geosciences 14, no. 4: 99. https://doi.org/10.3390/geosciences14040099
APA StyleTsakalos, E., Filippaki, E., Lin, A., Kazantzaki, M., Nishiwaki, T., & Bassiakos, Y. (2024). Absolute Dating of Fault-Gouge Material Using Isothermal Thermoluminescence: An Example from the Nojima Fault Zone, SW Japan. Geosciences, 14(4), 99. https://doi.org/10.3390/geosciences14040099