Shaping the Future with Thermoresponsive Gels: Smart Materials for Emerging Technologies

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 305

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Advanced Environmental Research, West University of Timisoara (ICAM-WUT), 300086 Timisoara, Romania
Interests: natural compounds; analytical methodology; spectroscopy; active substance and secondary metabolites
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craova, Romania
Interests: gels; pharmaceutical

E-Mail Website
Guest Editor
Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
Interests: natural polymer materials

Special Issue Information

Dear Colleague,

Thermoresponsive gels are a dynamic class of materials that undergo reversible physical or chemical changes in response to temperature fluctuations. These smart gels have garnered significant interest due to their diverse applications, including drug delivery, tissue engineering, smart coatings, and soft robotics. This Special Issue of Gels aims to explore recent advances in the design, synthesis, and application of thermoresponsive gels. Topics of interest include novel polymer architectures, mechanisms of thermoresponsiveness, biocompatible and biodegradable systems, and the integration of these materials into innovative technological solutions. This Special Issue aims to bring together leading research on thermoresponsive gel systems, highlighting their potential to address critical challenges in science, engineering, and medicine.

Dr. Adina-Elena Segneanu
Dr. Cornelia Bejenaru
Dr. Maria Viorica Ciocîlteu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermoresponsive gels
  • smart materials
  • temperature-sensitive polymers
  • hydrogels
  • phase transition
  • adaptive materials
  • drug delivery systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 3480 KB  
Article
Research and Development of a CO2-Responsive TMPDA–SDS–SiO2 Gel System for Profile Control and Enhanced Oil Recovery
by Guojun Li, Meilong Fu, Jun Chen and Yuhao Zhu
Gels 2025, 11(9), 709; https://doi.org/10.3390/gels11090709 - 3 Sep 2025
Abstract
A CO2-responsive TMPDA–SDS–SiO2 gel system was developed and evaluated through formulation optimization, structural characterization, rheological testing, and core flooding experiments. The optimal formulation was identified as 7.39 wt% SDS, 1.69 wt% TMPDA, and 0.1 wt% SiO2, achieving post-CO [...] Read more.
A CO2-responsive TMPDA–SDS–SiO2 gel system was developed and evaluated through formulation optimization, structural characterization, rheological testing, and core flooding experiments. The optimal formulation was identified as 7.39 wt% SDS, 1.69 wt% TMPDA, and 0.1 wt% SiO2, achieving post-CO2 viscosities above 103–104 mPa·s. Spectroscopic and microscopic analyses confirmed that CO2 protonates TMPDA amine groups to form carbamate/bicarbonate species, which drive the micellar transformation into a wormlike network, thereby enhancing gelation and viscosity. Rheological tests showed severe shear-thinning behavior, excellent shear recovery, and reversible viscosity changes under alternating CO2/N2 injection. The gel demonstrated rapid responsiveness, reaching stable viscosities within 8 min, and maintained good performance after 60 days of thermal aging at 90 °C and in high-salinity brines. Plugging tests in sand-packed tubes revealed that a permeability reduction of 98.9% could be achieved at 0.15 PV injection. In heterogeneous parallel core flooding experiments, the gel preferentially reduced high-permeability channel conductivity, improved sweep efficiency in low-permeability zones, and increased incremental oil recovery by 14.28–34.38% depending on the permeability contrast. These findings indicate that the CO2-responsive TMPDA–SDS–SiO2 gel system offers promising potential as a novel smart blocking gel system for improving the effectiveness of CO2 flooding in heterogeneous reservoirs. Full article
Show Figures

Figure 1

Back to TopTop