Gels in the Oil Field

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Chemistry and Physics".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 7067

Special Issue Editor


E-Mail Website
Guest Editor
Department of Petroleum Engineering, China University of Geosciences, Wuhan 430074, China
Interests: EOR; polymer gel; oilfield chemistry; CCUS

Special Issue Information

Dear Colleagues,

As functional materials, gels play an important role in promoting the efficient exploitation of oil fields, in processes such as gel plugging during drilling to prevent the loss of drilling fluid, the improvement of the effects of acidizing and fracturing, conformance control and water plugging, enhanced oil recovery using gels during oil production, and the improvement of the treatment effect using gels during oil and water treatment and separation. There are also important research efforts and applications in the CCUS field. With the developments achieved in recent years, gel technologies have become increasingly mature, making gels important products in oil field chemistry. These technologies include the research and development of new gels and the evaluation of gel properties and applications in the traditional oil and gas field, the new energy field, and the CCUS field. Therefore, this Special Issue is dedicated to reporting gel research and applications in the oil and related fields, providing practitioners with a more comprehensive research report and promoting the development of gel technology.

Dr. Lei Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gel
  • oil field
  • exploration and development
  • CCUS
  • functional materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 7861 KiB  
Article
Preparation and Performance Evaluation of Environmentally Friendly Foam Hydrogel Based on Polyvinyl Alcohol/Organic Titanium Crosslinking Agent
by Ru Ma, Gaoshen Su, Ya Nie, Huan Yang and Xiaorong Yu
Gels 2025, 11(3), 181; https://doi.org/10.3390/gels11030181 - 6 Mar 2025
Viewed by 527
Abstract
Foam and hydrogel profile control are commonly utilized water-blocking and profile modification techniques in oil fields. This study integrates a foam system with a gel system, employing an organic titanium crosslinking agent to crosslink polyvinyl alcohol, thereby forming a gel system. Concurrently, a [...] Read more.
Foam and hydrogel profile control are commonly utilized water-blocking and profile modification techniques in oil fields. This study integrates a foam system with a gel system, employing an organic titanium crosslinking agent to crosslink polyvinyl alcohol, thereby forming a gel system. Concurrently, a gas-evolving agent is incorporated into the system to induce in situ foaming, thereby creating an environmentally benign foam gel system. The fundamental constituents of this system comprise 2 wt% to 5 wt% polyvinyl alcohol, 2 wt% to 4 wt% crosslinker, and 0.3 wt% to 0.9 wt% gas-generating agent. By varying the amounts of each component, the strength grade, gelation time, and foaming volume of the foam gel can be effectively adjusted. The results of the temperature resistance performance evaluation indicate that within the temperature range of 80 °C to 130 °C, the gelation performance of the foam gel is stable and good. At 90 °C, the foam gel can remain stable for 340 days with minimal strength variation. The plugging experiments indicate that the formulated foam gel system exhibits superior injectability and can effectively seal the sand-filled tube model, achieving a blocking efficiency of up to 96.36%. Full article
(This article belongs to the Special Issue Gels in the Oil Field)
Show Figures

Graphical abstract

14 pages, 1660 KiB  
Article
Stress Overshoot Analysis in Flow Start-Up Tests: Aging Time Fitting of the Different Gel-Based Drilling Fluids
by Luis H. Quitian-Ardila, Raquel S. Schimicoscki, Yamid J. Garcia-Blanco, Eduardo M. Germer, Vladimir Ballesteros-Ballesteros, Oriana Palma Calabokis and Admilson T. Franco
Gels 2025, 11(2), 127; https://doi.org/10.3390/gels11020127 - 10 Feb 2025
Cited by 1 | Viewed by 608
Abstract
Drilling fluids are essential for maintaining cutting suspension during drilling, exhibiting gel-like behavior at rest and liquid-like behavior under shearing. These fluids display shear-thinning behavior, yield stress, and thixotropy. This study investigates the impact of aging time on stress overshoot and the deformation [...] Read more.
Drilling fluids are essential for maintaining cutting suspension during drilling, exhibiting gel-like behavior at rest and liquid-like behavior under shearing. These fluids display shear-thinning behavior, yield stress, and thixotropy. This study investigates the impact of aging time on stress overshoot and the deformation required to disrupt the gelled structure of water-based and synthetic-based drilling fluids. Flow start-up tests were conducted using a rotational rheometer at 25 °C and atmospheric pressure. The results show that aging time significantly affects both stress overshoot and the shear strain needed to disrupt the gelled structure. Longer aging times reduce the strain required to break the structure, indicating a correlation between aging time and stress overshoot. The fitted model strongly correlates with the experimental data, providing valuable insights for the planning and simulation of offshore drilling wells, primarily in well stability. Full article
(This article belongs to the Special Issue Gels in the Oil Field)
Show Figures

Figure 1

16 pages, 56923 KiB  
Article
An Amide-Carboxylic Acid Compound as Gel Structure Breaker to Improve the Rheology of Oil-Based Drilling Fluids
by Yu Zhang, Kaihe Lv, Xianbin Huang, Zhe Li, Yang Zhang and Zhenhang Yuan
Gels 2025, 11(2), 97; https://doi.org/10.3390/gels11020097 - 30 Jan 2025
Viewed by 677
Abstract
High-density oil-based drilling fluids (OBDFs) are widely used in drilling operations, but during their application, the viscosity of the fluid typically increases due to the enhancement of the solid-phase gel network structure. This can lead to issues such as impaired fluid circulation, increased [...] Read more.
High-density oil-based drilling fluids (OBDFs) are widely used in drilling operations, but during their application, the viscosity of the fluid typically increases due to the enhancement of the solid-phase gel network structure. This can lead to issues such as impaired fluid circulation, increased blowout risks, and accelerated drill bit wear. In this study, a compound (OCD), synthesized from tall oil fatty acids, diethylene triamine, and maleic anhydride, was developed to disrupt the strong gel structure in high-density OBDFs, thereby reducing the viscosity of the OBDFs. Rheological properties, including viscosity, yield point, and gel strength, were tested to evaluate the viscosity-reducing effect of OCD on both laboratory-prepared and field high-density OBDFs. Additionally, the effects of OCD on electrical stability (ES), high-temperature high-pressure (HTHP) filtration loss, and solid-phase settling stability were also tested. Finally, the mechanism of OCD was analyzed through contact angle tests, particle size analysis, and microstructural observations. The experimental results demonstrated that OCD could effectively reduce the viscosity of various high-density OBDFs. Adding 2 wt% of OCD reduced the apparent viscosity of laboratory-prepared OBDFs by 20.4%, and reduced the apparent viscosity of field OBDFs with a density of 1.7 g/cm3 by 29.2%. Furthermore, OCD showed good compatibility with OBDFs, having negligible effects on HTHP filtration loss and ES, and maintained good viscosity-reducing performance even at 180 °C. Mechanistic studies revealed that OCD enhanced the hydrophobicity of the solid phase, reduced the particle size of solids, and prevented the formation of excessive network structures in the oil. Therefore, this study provides significant practical value for controlling the rheological performance of the gel system in OBDFs. Full article
(This article belongs to the Special Issue Gels in the Oil Field)
Show Figures

Figure 1

17 pages, 2634 KiB  
Article
Mechanisms of Low Temperature Thickening of Different Materials for Deepwater Water-Based Drilling Fluids
by Zhongyi Wang, Jinsheng Sun, Kaihe Lv, Xianbin Huang, Zhenhang Yuan and Yang Zhang
Gels 2024, 10(12), 789; https://doi.org/10.3390/gels10120789 - 2 Dec 2024
Viewed by 956
Abstract
During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and [...] Read more.
During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and the behavior of low temperature gelation. As a coarse dispersion system, water-based drilling fluid has a complex composition of dispersed phase and dispersing medium. Further clarification of low temperature gelation would be helpful in developing technical approaches to enhance the flat rheology performance of deepwater water-based drilling fluids. In this paper, different components are separated in order to comprehensively analyze the gelation behavior of different materials in water-based drilling fluids at low temperatures. In the first place, the rheological and hydrodynamic radius alterations of inorganic salts, bentonite, and additives in aqueous solutions were examined at low temperatures. The effects of inorganic salts, bentonite, and additives on the purified water system were investigated at low (4 °C)–normal (25 °C)–high (75 °C) temperatures. The low temperature gelation of different materials in pure water systems are fully clarified. The mud containing 4% bentonite with weak low temperature gelation commonly used in deepwater water-based drilling fluids was selected as the basic test system. Inorganic salts, additives, and solid-phase materials were added to the mud containing 4% bentonite. The effects of the interactions between different materials and bentonite particles on the low temperature gelation behavior of mud were analyzed. The higher the bentonite dosage, the stronger the low temperature gelation behavior of mud. The higher the addition of inorganic salts, the more serious the low temperature gelation behavior of mud. Inorganic salts should be avoided as much as possible to add too much. The low temperature gelation behavior of mud with low-viscosity additives is weak. However, the viscosity of mud with high-viscosity additives has a small change in viscosity with increasing temperature. The low temperature gelation of mud with the addition of solid-phase particulate materials with reactive groups on the surface is strong, and the low temperature gelation with the addition of inert particles is weak. This paper elucidates the low temperature gelation mechanism of bentonite, inorganic salts, additives, and solid-phase materials in deepwater water-based drilling fluids. The conclusion can also be used to guide the construction of a drilling fluid system, which is of great significance for the research and development of deepwater water-based drilling fluid additives and the safe and efficient performance of deepwater drilling fluids. Full article
(This article belongs to the Special Issue Gels in the Oil Field)
Show Figures

Figure 1

13 pages, 2801 KiB  
Article
Development and Performance Evaluation of a New Conformance Control Agent Gel
by Bin Ma, He Wang, Shu Jiang, Mengyu Chen and Lei Zhang
Gels 2024, 10(10), 618; https://doi.org/10.3390/gels10100618 - 26 Sep 2024
Viewed by 774
Abstract
How to effectively plug the multi-scale fractured water channeling has always been the key to achieving efficient water flooding of fractured low-permeability oil reservoirs. In this paper, a new type of supramolecular–polymer composite gel is developed, which is suitable for plugging multi-scale fractured [...] Read more.
How to effectively plug the multi-scale fractured water channeling has always been the key to achieving efficient water flooding of fractured low-permeability oil reservoirs. In this paper, a new type of supramolecular–polymer composite gel is developed, which is suitable for plugging multi-scale fractured water channeling. The supramolecular–polymer composite gel is composed of a polymer (such as polyacrylamide), cross-linking agent (such as polyethyleneimine), supramolecular gel factor (such as cyclodextrin) and polarity regulator (such as ethyl alcohol). The mass fraction of polyacrylamide, polyethyleneimine, cyclodextrin and ethyl alcohol are 0.15%, 0.2%, 1% and 0.2%, respectively. At the initial state, the viscosity of the composite gelant system is less than 20 mPa·s. It has good injection performance in micro-scale fractures and can enter the deep part of a fractured reservoir. At 40 °C, the composite gelant system can form a gel with a double network structure after gelation. One of the networks is formed by the covalent interaction between polyacrylamide and polyethyleneimine, the other network is formed by the self-assembly of cyclodextrins under the action of the ethyl alcohol. The comprehensive performance of the composite gel is greatly improved. The strength of the composite gel is >5 × 104 mPa·s, and it has good plugging strength in large-scale fractures. The composite gel can be used as a conformance control agent for fractured low-permeability oilfields. Full article
(This article belongs to the Special Issue Gels in the Oil Field)
Show Figures

Figure 1

19 pages, 7605 KiB  
Article
Self-Degradable Rubber Plug for Temporary Plugging and Its Degradation Mechanism
by Fan Yang, Fan Li, Renjing Ji, Xiaorong Yu, Huan Yang and Gaoshen Su
Gels 2024, 10(10), 615; https://doi.org/10.3390/gels10100615 - 25 Sep 2024
Viewed by 1248
Abstract
A self-degradable rubber plug (SDRP) was developed to address issues in existing crosslinked polymer temporary plugging technology, such as poor self-degradation properties. The synthesis formula was optimized using response surface analysis, resulting in an optimized composition of the SDRP: 13 wt% monomer, 0.02 [...] Read more.
A self-degradable rubber plug (SDRP) was developed to address issues in existing crosslinked polymer temporary plugging technology, such as poor self-degradation properties. The synthesis formula was optimized using response surface analysis, resulting in an optimized composition of the SDRP: 13 wt% monomer, 0.02 wt% initiator, 0.7 wt% crosslinker, and 1.8 wt% degradation catalyst. Under the condition of 70–120 °C, the SDRP was transformed from a liquid to a solid gel in 30–110 min; the degradation time was 3–10 days, and the viscosity of the completely degraded solution was lower than 20 mPa·s. At an injection volume of 1 PV SDPR, a breakthrough pressure of 8.34 MPa was achieved. The hydrolysis of the unstable crosslinker was found to have caused the breakage of the SDRP. Over time, the functional groups within the unstable crosslinker underwent hydrolysis due to the combined effects of temperature and the degradation catalyst. This process led to the disruption of crosslinking points, resulting in a gradual deterioration of the network structure. As a consequence, some immobile water was converted into free water. The mobility of water molecules increased until the plug was completely degraded into a viscous liquid. This study enriches the temporary plugging gel system. Full article
(This article belongs to the Special Issue Gels in the Oil Field)
Show Figures

Figure 1

15 pages, 4466 KiB  
Article
Degradable Gel for Temporary Plugging in High Temperature Reservoir and Its Properties
by Fan Yang, Jinhua Liu, Renjing Ji, Xiaorong Yu, Huan Yang and Gaoshen Su
Gels 2024, 10(7), 445; https://doi.org/10.3390/gels10070445 - 5 Jul 2024
Cited by 2 | Viewed by 1576
Abstract
Although various degradable gel materials have been developed for temporary plugging in oil fields, they often degrade too quickly in high-temperature environments. To address this issue, an unstable crosslinker was synthesized to prepare a high-temperature degradable gel. This gel does not degrade excessively [...] Read more.
Although various degradable gel materials have been developed for temporary plugging in oil fields, they often degrade too quickly in high-temperature environments. To address this issue, an unstable crosslinker was synthesized to prepare a high-temperature degradable gel. This gel does not degrade excessively fast at high temperatures. Temperature and crosslinker concentration are the primary factors influencing gel degradation time, followed by monomer and initiator concentrations. Increased temperature and decreased crosslinker concentration both reduce degradation time, which can be adjusted within the range of 90–130 °C by varying the crosslinker concentration. The molecular structure and thermal stability of the degradable gel were analyzed using FTIR, 13C NMR, and TG. Furthermore, the viscoelastic properties, compressive performance, plugging performance, and core damage performance of the gel were evaluated. Within the test range of 0.1–1000 Pa, the storage modulus is higher than the loss modulus. The gel prepared at 130 °C exhibited a compressive stress of 0.25 MPa at 50% strain. The plugging pressure of the gel in sand-filled tubes with varying permeabilities (538.2–2794.1 mD) exceeded 15 MPa while maintaining a core damage rate below 5%. SEM analysis indicated that the degradation mechanism of the gel may involve the collapse of its three-dimensional network structure due to the hydrolysis of amide groups in the crosslinker. The viscosity of the degradation liquid was below 11 mPa·s, enabling it to be brought back to the surface with the formation fluid without the need for further breaking operations. Full article
(This article belongs to the Special Issue Gels in the Oil Field)
Show Figures

Figure 1

Back to TopTop