Antimicrobial Gels and Related Process Technologies

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Processing and Engineering".

Deadline for manuscript submissions: closed (31 July 2025) | Viewed by 804

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, 41065 Mönchengladbach, Germany
Interests: sol–gel technology; antimicrobial materials; textile coating; effect pigments; UV protection; functionalization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Due to the recent pandemic affecting everyday life, people have realized the importance of antimicrobial materials offering significant protection for human health. However, antimicrobial materials are important in many other different fields, offering material protection and support in cases of autoimmune diseases such as atopic dermatitis. Also, antimicrobial materials are useful in helping people with diabetes to avoid diabetes foot syndrome.

Against this background, this Special Issue is dedicated to gels with antimicrobial properties but also to any kind of process technologies used for the preparation of antimicrobial gel materials or coatings. Functional antimicrobial and innovative materials are of high interest in science and for industrial application and will find a broad auditorium in this Special Issue.

Prof. Dr. Boris Mahltig
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial gel materials
  • coatings
  • functional materials
  • sol–gel technology
  • gel processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2538 KB  
Article
Development and Evaluation of Nystatin-Loaded Novasomal Gel for the Treatment of Candida albicans Infection: In Vitro Microbiological and Skin Compatibility Study
by Muhammad Abid Mustafa, Muhammad Fahad, Maryam Mughal, Namra Rasheed, Saad S. Alqahtani and Muhammad Zahid Iqbal
Gels 2025, 11(10), 774; https://doi.org/10.3390/gels11100774 - 25 Sep 2025
Viewed by 467
Abstract
Candida infections pose a significant health threat, and conventional antifungal drugs like nystatin are limited due to poor solubility, skin permeability, and frequent dosage requirements. Nystatin effectively targets Candida species by disrupting cell membranes, but formulation issues hinder clinical use. Lipid-based vesicular carriers, [...] Read more.
Candida infections pose a significant health threat, and conventional antifungal drugs like nystatin are limited due to poor solubility, skin permeability, and frequent dosage requirements. Nystatin effectively targets Candida species by disrupting cell membranes, but formulation issues hinder clinical use. Lipid-based vesicular carriers, or novasomes, provide controlled, prolonged drug release and enhanced skin penetration. This study focuses on developing nystatin-loaded novasomal gels as an advanced drug delivery system to enhance therapeutic efficacy, bioavailability, and patient compliance. The formulation was prepared using a modified ethanol injection technique, combining stearic acid, oleic acid, Span 60, cholesterol, and Carbopol to produce a stable transdermal gel. Comprehensive in vitro characterization using FTIR, SEM, XRD, and thermal analysis confirmed the chemical compatibility, morphological uniformity, and physical stability of the nystatin-loaded novasomal gel. Entrapment efficiency differed significantly among the formulations (p < 0.05), with F7 achieving the highest value (80%). All formulations maintained pH levels within the skin-friendly range of 5.5 to 7.0. Viscosity measurements, ranging from 3900 ± 110 to 4510 ± 105 cP, confirmed their appropriate consistency for dermal use. Rheological analysis showed a dominant elastic response, as indicated by storage modulus values consistently higher than the loss modulus. Particle size ranged from 4143 to 9570 nm, while PDI values remained below 0.3, reflecting uniform particle distribution. Zeta potential values were strongly negative, supporting physical stability. XRD studies indicated reduced crystallinity of nystatin within the formulations, while FTIR confirmed drug-excipient compatibility. SEM images showed spherical particles within the micrometer range. In vitro release studies demonstrated sustained drug release over 12 h, with F6 releasing the highest amount. The novasomal gel formulations-maintained stability for 30 days, with no notable alterations in pH, viscosity, or entrapment efficiency. Antifungal evaluation showed a larger inhibition zone (23 ± 2 mm) compared with the plain drug solution (15 ± 1.6 mm), while the MIC value was reduced (4.57 µg/mL), indicating greater potency. Skin irritation assessment in rats revealed only minor, temporary erythema, and the calculated Primary Irritation Index (0.22) confirmed a non-irritant profile. These findings suggest that the developed novasomal gel offers a promising approach for enhancing the treatment of fungal infections by enabling prolonged drug release, minimizing dosing frequency, and improving patient compliance. Full article
(This article belongs to the Special Issue Antimicrobial Gels and Related Process Technologies)
Show Figures

Graphical abstract

Back to TopTop