Confined Space Fire Safety and Alternative Fuel Fire Safety

A special issue of Fire (ISSN 2571-6255).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1474

Special Issue Editors


E-Mail Website
Guest Editor
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
Interests: fire in confined spaces; numerical calculation of fluid flow and heat transfer
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Engineering, China University of Geosciences, Wuhan 430074, China
Interests: leakage and seepage of liquid fuels; infiltration combustion
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Disaster Prevention Science and Safety Technology, Central South University, Changsha 410075, China
Interests: detonation; shock wave; methane; fire resistance; beams and girders; bridge engineering; temperature distribution; numerical model; smoke

E-Mail Website
Guest Editor
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
Interests: particle size analysis; dust explosion; detonation; shock wave; methane; numerical model; stress wave; crack propagation

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the critical areas of confined space fire safety and the emerging challenges posed by alternative fuels. It brings together cutting-edge research, practical insights, and innovative solutions to enhance fire safety in confined environments and address the unique hazards associated with alternative fuel sources. This issue explores advancements in fire prevention, detection, and suppression strategies tailored for confined spaces, considering the specific risks and limitations these environments present. Additionally, it delves into the fire behavior and suppression techniques for alternative fuels, such as biofuels, hydrogen, and electric vehicle batteries, highlighting the need for adapted fire safety protocols and firefighter training. By presenting a comprehensive analysis of these topics, this Special Issue aims to contribute to the development of safer practices, standards, and technologies for mitigating fire risks in confined spaces and managing the evolving challenges of alternative fuel fire safety.

Dr. Peng Lei
Dr. Yulun Zhang
Dr. Jie Chen
Dr. Qi Zhao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fire is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • confined space fire
  • underground space fire
  • smoke transportation characteristics
  • alternative fuel fire and explosion
  • ventilation and smoke control
  • fire monitoring and early warning

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6584 KiB  
Article
Fire Test Study and FDS Verification of Spray Water Volume for Small-Sized Bookstores in the Revitalization of Historical Buildings
by Peng Du, Jing Liu, Cheng Zhang, Zhixin Zheng, Guangyue Gu, Jiaming Zhao, Feng Yan, Songtao Liu, Rutian Li and Jun Zhang
Fire 2025, 8(6), 224; https://doi.org/10.3390/fire8060224 - 3 Jun 2025
Viewed by 270
Abstract
Small bookstores constructed before the 1970s have a high fire risk in the context of the revitalization of historical buildings; while the setup of simple sprinklers is an effective and cheap method of extinguishing fires, the parameters of the sprinklers are uncertain. In [...] Read more.
Small bookstores constructed before the 1970s have a high fire risk in the context of the revitalization of historical buildings; while the setup of simple sprinklers is an effective and cheap method of extinguishing fires, the parameters of the sprinklers are uncertain. In this study, small bookstores in Beijing were selected, and physical combustion experiments with/without a sprinkler system were carried out following the provisions of the Code for the Design of Sprinkler Systems. After the experiments, an FDS model was set up using fire dynamics software. The results show that the total heat release rate (HRR) of books and desks is related to the square of time, with a coefficient of 2.528 × 10−6, and the maximum heat release rate is 40 KW. Unlike the standard test, the physical combustion experiment is significantly affected by the space. According to numerical simulations, when the sprinkler flow velocity is 60~100 L/min, the water consumption of the sprinkler is 195~218 L. This study lays the foundation for the analysis of the combustion characteristics of small bookstores and provides data support for the installation of simple sprinkler systems in small bookstores. Full article
(This article belongs to the Special Issue Confined Space Fire Safety and Alternative Fuel Fire Safety)
Show Figures

Figure 1

28 pages, 11453 KiB  
Article
Risk Analysis of Fuel Leakage and Explosion in LNG-Powered Ship Cabin Based on Computational Fluid Dynamics
by Yuechao Zhao, Yubo Li, Weijie Li, Yuan Gao, Qifei Wang and Dihao Ai
Fire 2025, 8(5), 192; https://doi.org/10.3390/fire8050192 - 10 May 2025
Viewed by 368
Abstract
In order to analyze the explosion risk of the engine room, this paper uses CFD software to simulate the LNG leakage process in the engine room of the ship, and uses the combustible gas cloud obtained from the leakage simulation to simulate the [...] Read more.
In order to analyze the explosion risk of the engine room, this paper uses CFD software to simulate the LNG leakage process in the engine room of the ship, and uses the combustible gas cloud obtained from the leakage simulation to simulate the explosion, analyzing its combustion and explosion dynamics. On the basis of previous studies, this paper studies the coupling of leakage and explosion simulation to ensure that it conforms to the real situation. At the same time, taking explosion overpressure, explosion temperature, and the mass fraction of combustion products as the breakthrough point, this paper studies the harm of explosion to human body and the influence of ignition source location on the propagation characteristics of LNG explosion shock wave in the engine room, and discusses the influence of obstacles on gas diffusion and accumulation. The results show that the LNG leakage reaches the maximum concentration in the injection direction, and the obstacles in the cabin have a significant effect on the diffusion and accumulation of gas. In the explosion simulation based on the leakage results, it can be determined that the shape of the pressure field generated by the explosion is irregular, and the pressure field at the obstacle side has obvious accumulation. Finally, in order to reduce the explosion hazard, the collaborative strategy of modular layout, directional ventilation, and gas detection is proposed, which provides ideas for the explosion-proof design of the cabin. Full article
(This article belongs to the Special Issue Confined Space Fire Safety and Alternative Fuel Fire Safety)
Show Figures

Figure 1

21 pages, 30381 KiB  
Article
Study on Smoke Diffusion and Fire Ejection Behavior from Broken Windows of a High-Speed Train Carriage
by Shi Meng, Dan Zhou and Tao Chen
Fire 2025, 8(4), 137; https://doi.org/10.3390/fire8040137 - 31 Mar 2025
Viewed by 356
Abstract
Current research on fires in high-speed train carriages mainly focuses on the temperature distribution of smoke, while the flow structure and dynamic evolution patterns of smoke have not been reviewed. This study employs numerical simulation to systematically investigate the fire ejection behavior from [...] Read more.
Current research on fires in high-speed train carriages mainly focuses on the temperature distribution of smoke, while the flow structure and dynamic evolution patterns of smoke have not been reviewed. This study employs numerical simulation to systematically investigate the fire ejection behavior from broken windows of a high-speed train carriage, and the influence of different broken window parameters was considered. The research results indicate that the asymmetric geometric configuration of seats on both sides of the fire source induces a lateral displacement of fire smoke toward the downstream direction due to the sidewall effect, resulting in an asymmetrical distribution of smoke flow velocity and temperature within the compartment. Compared to fire scenarios with one broken window, the presence of broken windows on both sides increases the number of smoke dispersion outlets, leading to a significant rise in smoke flow velocity around the fire source. In the aisle region far from the fire source, the smoke flow velocity decreases, consequently lowering the compartment temperature. Compared with the case of one broken window, the aisle temperature decreased by 83 K in the case of two broken windows. When the broken window is located farther from the fire source, smoke tends to accumulate extensively within the compartment before being discharged through the broken windows, which enhances the longitudinal smoke flow velocity and elevates the compartment temperature. When a window far from the fire source is breached, the temperature in the aisle increases by 270 K compared to when a window in the middle of the carriage is breached. Full article
(This article belongs to the Special Issue Confined Space Fire Safety and Alternative Fuel Fire Safety)
Show Figures

Figure 1

Back to TopTop