Special Issue "Gut Microbiome and Human Diseases"

A special issue of Diseases (ISSN 2079-9721).

Deadline for manuscript submissions: 31 December 2018

Special Issue Editors

Guest Editor
Prof. Dr. Hiroshi Fukui

Department of Gastroenterology, Endocrinology and Metabolism, Nara Medical University, Nara, Japan
E-Mail
Interests: gut microbiome, liver disease, metagenomics, metabolomics, alcoholic liver disease, nonalcoholic steatohepatitis(NASH), liver cirrhosis and hepatocellular carcinoma
Guest Editor
Prof. Dr. Luis Vitetta

Sydney Medical School, The University of Sydney, Sydney, Australia
Medlab Clinical Ltd, Sydney, Australia
E-Mail
Interests: Intestinal microbiome, probiotics, immune function, Metabolic Disorders, Mood Disorders, Cancer
Guest Editor
Ms. Emma Tali Saltzman

Department of Pharmacology, School of Medicine, University of Sydney, Australia
The Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, School of Medicine, University of Sydney, Australia
Medlab Clinical Ltd, Sydney, Australia
E-Mail
Interests: Gut Microbiome, Non-alcoholic fatty liver disease, Metabolic Syndrome

Special Issue Information

Dear Colleagues,

The gut microbiome is the most densely populated microbial site on or within the human body. With at least 1000 different species of microbes residing in the human gastrointestinal tract (GIT), host-microbial crosstalk contributes to the maintenance of a homeostatic relationship between the two parties. The gut microbiome exerts immunological, protective and metabolic effects on the host, with a disruption to the balanced relationship posited to be involved in the pathogenesis of various diseases including liver, intestinal, metabolic, mental and immunological disorders. Intestinal epithelial cell dysbiosis linked to adverse shifts in the intestinal microbiome and their products is characterised by increased intestinal permeability and enhanced microbial translocation. Animal and human studies have confirmed the role of intestinal epithelial cell dysbiosis in the manifestation of metabolic syndrome and associated complications, including non-alcoholic fatty liver disease (NAFLD). The posited mechanism of action is that microbial translocation due to increased intestinal permeability can induce a state of metabolic endotoxemia when bacteria and bacterial fragments leak into systemic circulation and cultivate a pro-inflammatory environment in various organs. Low-grade chronic systemic inflammation not only provokes immunological disturbances but also contributes to the development of insulin resistance, type 2 diabetes mellitus and other obesity-related complications. Gut microbiome has further substantial impacts on cancer development.

This special issue, titled ‘Gut Microbiome and Human Diseases’, will aim to explore the current understanding of the role of the gut microbiome in the pathogenesis of liver, intestine, metabolic, mental and immunological disorders as well as research exploring how the gut microbiome can be manipulated with probiotics/prebiotics and antibiotics designated as adjunct medicines could beneficially help to treat these variable human diseases.

Prof. Dr. Hiroshi Fukui
Prof. Dr. Luis Vitetta
Ms. Emma Tali Saltzman
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diseases is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 350 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gut microbiome
  • liver diseases
  • non-alcoholic fatty liver disease (NAFLD)
  • type 2 Diabetes Mellitus (T2DM)
  • metabolic Syndrome (MetS)
  • probiotics
  • prebiotics
  • synbiotics
  • inflammatory bowel disease
  • irritable bowel syndrome
  • depression
  • allergic diseases
  • autoimmune diseases
  • cardiovascular diseases
  • renal diseases
  • cancer

Published Papers (4 papers)

View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Review

Jump to: Other

Open AccessFeature PaperReview Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling
Received: 26 July 2018 / Revised: 23 August 2018 / Accepted: 4 September 2018 / Published: 6 September 2018
PDF Full-text (422 KB) | HTML Full-text | XML Full-text
Abstract
The microbiome gut brain (MGB) axis consists of bidirectional routes of communication between the gut and the brain. It has emerged as a potential therapeutic target for multiple medical specialties including psychiatry. Significant numbers of preclinical trials have taken place with some transitioning
[...] Read more.
The microbiome gut brain (MGB) axis consists of bidirectional routes of communication between the gut and the brain. It has emerged as a potential therapeutic target for multiple medical specialties including psychiatry. Significant numbers of preclinical trials have taken place with some transitioning to clinical studies in more recent years. Some positive results have been reported secondary to probiotic administration in both healthy populations and specific patient groups. This review aims to summarise the current understanding of the MGB axis and the preclinical and clinical findings relevant to psychiatry. Significant differences have been identified between the microbiome of patients with a diagnosis of depressive disorder and healthy controls. Similar findings have occurred in patients diagnosed with bipolar affective disorder and irritable bowel syndrome. A probiotic containing Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum produced a clinically measurable symptom improvement in patients with depressive disorder. To date, some promising results have suggested that probiotics could play a role in the treatment of stress-related psychiatric disease. However, more well-controlled clinical trials are required to determine which clinical conditions are likely to benefit most significantly from this novel approach. Full article
(This article belongs to the Special Issue Gut Microbiome and Human Diseases)
Figures

Figure 1

Open AccessFeature PaperReview Gut Microbiome and Cardiovascular Diseases
Received: 8 June 2018 / Revised: 27 June 2018 / Accepted: 29 June 2018 / Published: 29 June 2018
PDF Full-text (236 KB) | HTML Full-text | XML Full-text
Abstract
Recent evidence has suggested that the gut microbiome is involved in human health and diseases, such as inflammatory bowel disease, liver cirrhosis, rheumatoid arthritis, and type 2 diabetes. Cardiovascular diseases, which are associated with high morbidity and mortality across the world, are no
[...] Read more.
Recent evidence has suggested that the gut microbiome is involved in human health and diseases, such as inflammatory bowel disease, liver cirrhosis, rheumatoid arthritis, and type 2 diabetes. Cardiovascular diseases, which are associated with high morbidity and mortality across the world, are no exception. Increasing evidence has suggested a strong relationship between the gut microbiome and the progression of cardiovascular diseases. We first reported such a relationship with coronary artery disease two years ago. Next-generation sequencing techniques, together with bioinformatics technology, constantly and dramatically expand our knowledge of the complex human gut bacterial ecosystem and reveal the exact role of this bacterial ecosystem in cardiovascular diseases via the functional analysis of the gut microbiome. Such knowledge may pave the way for the development of further diagnostics and therapeutics for prevention and management of cardiovascular diseases. The aim of the current review is to highlight the relationship between the gut microbiome and their metabolites, and the development of cardiovascular diseases by fostering an understanding of recent studies. Full article
(This article belongs to the Special Issue Gut Microbiome and Human Diseases)
Open AccessFeature PaperReview Psoriasis and Microbiota: A Systematic Review
Received: 5 May 2018 / Revised: 29 May 2018 / Accepted: 1 June 2018 / Published: 2 June 2018
PDF Full-text (239 KB) | HTML Full-text | XML Full-text
Abstract
Background: Recent advances have highlighted the crucial role of microbiota in the pathophysiology of chronic inflammatory diseases as well as its impact on the efficacy of therapeutic agents. Psoriasis is a chronic, multifactorial inflammatory skin disorder, which has a microbiota distinct from healthy,
[...] Read more.
Background: Recent advances have highlighted the crucial role of microbiota in the pathophysiology of chronic inflammatory diseases as well as its impact on the efficacy of therapeutic agents. Psoriasis is a chronic, multifactorial inflammatory skin disorder, which has a microbiota distinct from healthy, unaffected skin. Aim: Through an extensive review of the literature, we aim to discuss the skin and gut microbiota and redefine their role in the pathogenesis of psoriasis. Conclusions: Unfortunately, the direct link between the skin microbiota and the pathogenesis of psoriasis remains to be clearly established. Apart from improving the course of psoriasis, selective modulation of the microbiota may increase the efficacy of medical treatments as well as attenuate their side effects. Full article
(This article belongs to the Special Issue Gut Microbiome and Human Diseases)

Other

Jump to: Review

Open AccessCommentary The Brain–Intestinal Mucosa–Appendix– Microbiome–Brain Loop
Received: 5 February 2018 / Revised: 28 February 2018 / Accepted: 29 March 2018 / Published: 1 April 2018
PDF Full-text (28444 KB) | HTML Full-text | XML Full-text
Abstract
The brain and the gut are connected from early fetal life. The mother’s exposure to microbial molecules is thought to exert in utero developmental effects on the fetus. These effects could importantly underpin the groundwork for subsequent pathophysiological mechanisms for achieving immunological tolerance
[...] Read more.
The brain and the gut are connected from early fetal life. The mother’s exposure to microbial molecules is thought to exert in utero developmental effects on the fetus. These effects could importantly underpin the groundwork for subsequent pathophysiological mechanisms for achieving immunological tolerance and metabolic equilibrium post birth, events that continue through to 3–4 years of age. Furthermore, it is understood that the microbiome promotes cues that instruct the neonate’s mucosal tissues and skin in the language of molecular and cellular biology. Post birth mucosal lymphoid tissue formation and maturation (most probably including the vermiform appendix) is microbiota-encouraged co-establishing the intestinal microbiome with a developing immune system. Intestinal mucosal tissue maturation loops the brain-gut-brain and is postulated to influence mood dispositions via shifts in the intestinal microbiome phyla. A plausible appreciation is that dysregulated pro-inflammatory signals from intestinal resident macrophages could breach the loop by providing adverse mood signals via vagus nerve afferents to the brain. In this commentary, we further suggest that the intestinal resident macrophages act as an upstream traffic controller of translocated microbes and metabolites in order to maintain local neuro-endocrine-immunological equilibrium. When macrophages are overwhelmed through intestinal microbiome and intestinal epithelial cell dysbiosis, pro-inflammatory signals are sustained, which may then lead to mood disorders. The administration of probiotics as an adjunctive medicine co-administered with antidepressant medications in improving depressed mood may have biological and clinical standing. Full article
(This article belongs to the Special Issue Gut Microbiome and Human Diseases)
Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Neuropsychiatric disorders: influence of gut microbe to brain signaling
Article type: Review
Author: Prof. Dr. Dinan, T. G

Title: Psychobiotics: a novel approach to the treatment of mental diseases
Article type: review
Author: Ushkalova EA, Zyrianov SK, Ushkalova AV
Affiliation: RUDN University (Moscow, Russia), Department of General and Clinical Pharmacology
Abstract: Intestinal microbial flora plays a key role in maintaining homeostasis and health. Emerging evidence suggests that intestinal flora can influence neural development, cognition and behavior through the brain-gut axis. Endocrine-, neurocrine-, and inflammation-related signals from gut microbiota may alter brain functions and vice versa signals from the brain can affect the microbial composition and function. Understanding microbiota-brain interactions is a rapidly developing area of research which has led to the emergence of the concept of psychobiotics, live organisms that, when ingested in adequate amounts, produce a health benefit in patients suffering from psychiatric illness. The article describes the current evidence regarding efficacy of psychobiotics and their potential role in the treatment of mental diseases.

Title: Gut microbiota and cardiovascular diseases
Author: Prof. Dr. Tomoya Yamashita

Title: Development of individualized probiotic and prebiotic treatments for metabolic syndrome
Article type: Review
Authors: Bubnov RV, Spivak MY, Lazarenko LM, Babenko LP
Affiliations: Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine
Abstract: Modification the gut microbiota in chronic diseases and metabolic syndrome is among leading tasks of microbiome research and needs for clinical use of probiotics. Probiotics have tremendous potential in personalized medicine and nutrition to develop healthy diets and are effective for applications in the gut and in distant sites. Cumulated evidence on phenotypes of probiotic strains should be considered for most effective individualized treatment via gut, oral and vaginal and other sites microbiome modulation according to phenotype of the patient providing individualized and personalized medicine approach. Microbiome phenotypes are parameters of predictive medicine to recognize patient`s predispositions and evaluate treatment responses; number of phenotype markers are effectively involved during microbiome modulation. preventive potential of probiotics is strong and well-documented.

2. Metal nanoparticles are potential prebiotics

3. Microbiome and Flammer syndrome interplay

Title: The effect of curcumin in the microbiota may explain its beneficial impact on the prevention of autoimmunity
Author: Dimitrios P. Bogdanos

Title: Gut microbe in liver diseases
Type: Review
Author: Prof. Dr. Hiroshi Fukui

Title: Abnormalities of the Enteric Microbiome Associated with Autism and Potential Treatments
Article type: Review
Author: Prof. Dr. Richard E. Frye

Title: Lactobacillus and Bifidobacteria probiotic strains improve glycemic and inflammatory profiles in obesity model in mice
Article type: Research
Author: Lazarenko L.M., Melnikova O.I., Babenko L.P., Bubnov R.V.*, Beregova T.V., Falaleyeva T.M., Spivak M.Ya.
Summary: The article will present results of the study of Lactobacillus and Bifidobacteria probiotic strains on glucose levels and and inflammation and perspective for development multiple-factorial probiotics effectove against obesity and metabolic syndrome (MetS), capable to normalize metabolism and inflammation in organism, consider detection of strains for hyperglycemia and diabetes mellitus as a part of MetS. Authors discuss the relevance of the model of metabolic syndrome, issues of translation and strategies for best strain selection for individualized treatment of obesity, metabolic syndrome and diabetes mellitus.

Back to Top