15th Anniversary of Catalysts—Catalysis for Biomass Conversion and Valorisation

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Biomass Catalysis".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 752

Special Issue Editors


E-Mail Website
Guest Editor
Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
Interests: catalytic conversion of bio-based materials to fuel and chemicals; molecular modeling on catalytic systems; green chemistry

Special Issue Information

Dear Colleagues,

As part of “the 15th Anniversary of Catalysts series”, this Special Issue aims to highlight the most relevant and innovative advances in biomass valorization. Although 15 years may appear to be a brief period, the catalytic conversion of biomass has changed considerably during this time, presenting further challenges like the synthesis of more resistant or selective catalysts, the impact assessment of their synthesis and use, or the selection of new materials to contribute to the circular economy. Thus, studies on different processes (such as pyrolysis, gasification, Fischer–Tropsch synthesis, transesterification, hydrolysis or fermentation, among others), and research focused on catalytic performance, its environmental impact or cost-effectiveness at industrial scale are welcome. In other words, despite a wide range of challenges, the future of biomass catalysis is promising, and we encourage you to contribute to this Special Issue to complete the outlook in this field.

Dr. Sergio Nogales Delgado
Prof. Dr. Changwei Hu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomass conversion
  • waste valorization
  • catalyst stability
  • deactivation
  • catalyst activity and selectivity
  • reusability
  • environmentally friendly
  • LCA
  • cost-effectiveness

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 1915 KB  
Article
Study of the Cathodic Catalytic Mechanisms of Microalgae-Based Microbial Fuel Cells
by Carolina Montoya-Vallejo, Juan Carlos Quintero Díaz and Francisco Jesús Fernández-Morales
Catalysts 2026, 16(2), 159; https://doi.org/10.3390/catal16020159 - 3 Feb 2026
Abstract
Microbial fuel cells (MFC) are promising systems for wastewater treatment and electricity production; however, many technical and economic challenges must be overcome. One approach to improve MFC performance is the use of photosynthetic microorganisms at the cathode to supply oxygen and reduce aeration [...] Read more.
Microbial fuel cells (MFC) are promising systems for wastewater treatment and electricity production; however, many technical and economic challenges must be overcome. One approach to improve MFC performance is the use of photosynthetic microorganisms at the cathode to supply oxygen and reduce aeration requirements. In this work, Chlorella sorokiniana was used as a cathodic biocatalyst, in order to supply oxygen while simultaneously obtaining high-value products. At the anode, an anaerobic mixed microbial culture was used as a biocatalyst. Different cathodic configurations were studied to evaluate the different cathodic catalytic mechanisms. Electrochemical characterization through cyclic voltammetry, polarization curves, biochemical analysis and SEM images was performed. Superior performance was achieved when employing microalgae as the cathodic oxygen source compared to systems relying on external aeration (128.7 mA/m2 vs. 45.2 mA/m2). The addition of methylene blue and sodium bicarbonate improved the current density (194.8 mA/m2 and 128.7 mA/m2). Results indicate that microalgae in the cathodic chamber could enhance MFC electrochemical performance and biomass production, boosting sustainable energy generation. Full article
Show Figures

Graphical abstract

16 pages, 1035 KB  
Article
Construction of Modified Silica Gel Catalysts and Their Enhancement of Fructose Dehydration for 5-HMF Production
by Liya Zheng, Yongshui Qu, Yibing Li, Yuanxin Cao, Quanyuan Wei and Ming Fang
Catalysts 2025, 15(12), 1160; https://doi.org/10.3390/catal15121160 - 10 Dec 2025
Viewed by 583
Abstract
To address the challenges of difficult recovery, significant environmental hazards associated with homogeneous catalysts, and insufficient catalytic activity of heterogeneous supports in the catalytic dehydration of fructose to produce 5-hydroxymethylfurfural (5-HMF), this study employs a straightforward nitric acid modification method to prepare an [...] Read more.
To address the challenges of difficult recovery, significant environmental hazards associated with homogeneous catalysts, and insufficient catalytic activity of heterogeneous supports in the catalytic dehydration of fructose to produce 5-hydroxymethylfurfural (5-HMF), this study employs a straightforward nitric acid modification method to prepare an acid-activated silica gel catalyst for application in this reaction system. Through systematic investigation of the influence of modification conditions on catalyst performance and economic benefits, optimal reaction conditions were determined: DMSO as the solvent, nitric acid-modified silica gel as the catalyst, a reaction temperature of 120 °C, a solid–liquid ratio of 1:30 (g∙mL−1), and a fructose-to-catalyst mass ratio of 1:1. Under these conditions, the maximum 5-HMF yield reached 91.6%. Characterization via specific surface area, pore size analysis, and acid/base site characterization (NH3-TPD) revealed that nitric acid modification preserved the silica gel’s pore structure. Through oxidative cleaning, etching to expose silanol groups, and inducing surface defects, this process significantly increased the number of acid sites on the silica gel surface, thereby enhancing catalytic activity. This study presents a low-cost, easily recoverable, and environmentally friendly heterogeneous catalytic strategy for the efficient conversion of fructose into 5-HMF. It also provides experimental guidance for the targeted functionalization of silica-based catalytic materials, holding significant implications for advancing the high-value utilization of biomass resources. Full article
Show Figures

Graphical abstract

Back to TopTop