Study of the Cathodic Catalytic Mechanisms of Microalgae-Based Microbial Fuel Cells
Abstract
1. Introduction
2. Results and Discussion
2.1. Effects of O2 and CO2 in mMFCs
2.2. Identification of the Main Catalytic Mechanisms in mMFCs
2.3. Electrochemical Characterization
2.4. Electrode Characteristics
2.5. General Performance of the Different Cathodic Systems
- Direct CO2 reduction at the cathode was not a dominant pathway under the evaluated conditions, as indicated by the low power density (Figure 1) and the absence of defined redox peaks in the cyclic voltammetry response of the SII configuration (Figure 5), suggesting a limited contribution of this mechanism.
- Extracellular electrogenic compounds were not detected in significant amounts in the spent medium of Chlorella sorokiniana, which is consistent with the low electrochemical performance observed for the SV configuration and suggests a minor role of freely soluble endogenous mediators.
- Chlorella sorokiniana was able to form a biofilm on the cathode surface, as confirmed by SEM observations (Figure 6), in which the presence of extracellular polymeric substances appears to contribute to the biofilm stability. However, the low voltage output and the absence of characteristic redox peaks in cyclic voltammetry indicate that direct electron transfer from the cathode to the microalgal cells was not the predominant electron uptake mechanism under the studied conditions.
- Oxygen reduction emerged as a relevant cathodic pathway. The dissolved oxygen concentrations in the presence of microalgae were significantly higher than those achieved by oxygen bubbling alone. Moreover, photosynthetic activity during the light phase was associated with increased current output in biocathode systems, indicating that oxygen produced by microalgae effectively supported the cathodic oxygen reduction reaction and enhanced voltage generation.
- Mediator-assisted electron transfer was supported by the addition of methylene blue (MB) to the biocathode, which resulted in increased power density and reduced internal resistance. These results suggest that the external artificial mediator played a significant role as a redox facilitator, enhancing electron transfer between the electrode and the algal cells, without observable inhibitory effects on the microalgal activity.
3. Materials and Methods
3.1. Anodic System and MFC Configuration
3.2. Cathodic Chamber
3.3. Experiments Planification
3.4. Chemical Analysis
3.5. Electrochemical Analysis
3.6. Electrode Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.F.; Kabir, M.; Mehjabin, A.; Oishi, F.T.Z.; Ahmed, S.; Mannan, S.; Mofijur, M.; Almomani, F.; Badruddin, I.A.; Kamangar, S. Waste Biorefinery to Produce Renewable Energy: Bioconversion Process and Circular Bioeconomy. Energy Rep. 2023, 10, 3073–3091. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. Driving Force of the Better Performance of Metal-Doped Carbonaceous Anodes in Microbial Fuel Cells. Appl. Energy 2018, 225, 52–59. [Google Scholar] [CrossRef]
- Rosenbaum, M.; He, Z.; Angenent, L.T. Light Energy to Bioelectricity: Photosynthetic Microbial Fuel Cells. Curr. Opin. Biotechnol. 2010, 21, 259–264. [Google Scholar] [CrossRef]
- Jadhav, D.A.; Mungray, A.K.; Arkatkar, A.; Kumar, S.S. Recent Advancement in Scaling-up Applications of Microbial Fuel Cells: From Reality to Practicability. Sustain. Energy Technol. Assess. 2021, 45, 101226. [Google Scholar] [CrossRef]
- de los Ángeles Fernandez, M.; de los Ángeles Sanromán, M.; Marks, S.; Makinia, J.; Gonzalez del Campo, A.; Rodrigo, M.; Fernandez, F.J. A Grey Box Model of Glucose Fermentation and Syntrophic Oxidation in Microbial Fuel Cells. Bioresour. Technol. 2016, 200, 396–404. [Google Scholar] [CrossRef]
- Saratale, R.G.; Kuppam, C.; Mudhoo, A.; Saratale, G.D.; Periyasamy, S.; Zhen, G.G.; Koók, L.; Bakonyi, P.; Nemestóthy, N.; Kumar, G. Bioelectrochemical Systems Using Microalgae—A Concise Research Update. Chemosphere 2017, 177, 35–43. [Google Scholar] [CrossRef]
- Sharma, V.; Kundu, P.P. Biocatalysts in Microbial Fuel Cells. Enzym. Microb. Technol. 2010, 47, 179–188. [Google Scholar] [CrossRef]
- Vishwanathan, A.S. Microbial Fuel Cells: A Comprehensive Review for Beginners. 3 Biotech 2021, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Mateo, S.; Gonzalez del Campo, A.; Cañizares, P.; Lobato, J.; Rodrigo, M.A.; Fernandez, F.J. Bioelectricity Generation in a Self-Sustainable Microbial Solar Cell. Bioresour. Technol. 2014, 159, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, K.K.; Kumar, V.; Vlaskin, M.S.; Sharma, N.; Rautela, I.; Nanda, M.; Arora, N.; Singh, A.; Chauhan, P.K. Microalgae Fuel Cell for Wastewater Treatment: Recent Advances and Challenges. J. Water Process Eng. 2020, 38, 101549. [Google Scholar] [CrossRef]
- Lee, D.J.; Chang, J.S.; Lai, J.Y. Microalgae-Microbial Fuel Cell: A Mini Review. Bioresour. Technol. 2015, 198, 891–895. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Leong, Y.K.; Yen, H.W.; Huang, C.Y.; Dong, C.D.; Chang, J.S. Microalgae-Microbial Fuel Cell (MMFC): An Integrated Process for Electricity Generation, Wastewater Treatment, CO2 Sequestration and Biomass Production. Int. J. Energy Res. 2020, 44, 9254–9265. [Google Scholar] [CrossRef]
- Cho, Y.K.; Donohue, T.J.; Tejedor, I.; Anderson, M.A.; McMahon, K.D.; Noguera, D.R. Development of a Solar-Powered Microbial Fuel Cell. J. Appl. Microbiol. 2008, 104, 640–650. [Google Scholar] [CrossRef]
- Tanaka, K.; Vega, C.A.; Tamamushi, R. Hionine and ferric chelate compounds as coupled mediators in microbial fuel cells. J. Electroanal. Chem. Interfacial Electrochem. 1983, 156, 289–297. [Google Scholar] [CrossRef]
- Sayre, R. Microalgae: The Potential for Carbon Capture. Bioscience 2010, 60, 722–727. [Google Scholar] [CrossRef]
- Huang, C.H.; Tan, C.S. A Review: CO2 Utilization. Aerosol Air Qual. Res. 2014, 14, 480–499. [Google Scholar] [CrossRef]
- Elshobary, M.E.; Zabed, H.M.; Yun, J.; Zhang, G.; Qi, X. Recent Insights into Microalgae-Assisted Microbial Fuel Cells for Generating Sustainable Bioelectricity. Int. J. Hydrogen Energy 2021, 46, 3135–3159. [Google Scholar] [CrossRef]
- Montoya-Vallejo, C.; Acosta-cárdenas, A. Crecimiento de Tetraselmis sp. Empleando Fertilizante Como Medio de Cultivo. Rev. ION 2021, 5, 53–64. [Google Scholar] [CrossRef]
- Kim, J.G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M.J.; Chung, H.Y.; Park, S. A Review of Lithium and Non-Lithium Based Solid State Batteries. J. Power Sources 2015, 282, 299–322. [Google Scholar] [CrossRef]
- Abu-Ghosh, S.; Fixler, D.; Dubinsky, Z.; Iluz, D. Energy-Input Analysis of the Life-Cycle of Microalgal Cultivation Systems and Best Scenario for Oil-Rich Biomass Production. Appl. Energy 2014, 154, 1082–1088. [Google Scholar] [CrossRef]
- Abdur Razzak, S.; Bahar, K.; Islam, K.M.O.; Haniffa, A.K.; Faruque, M.O.; Hossain, S.M.Z.; Hossain, M.M. Microalgae Cultivation in Photobioreactors: Sustainable Solutions for a Greener Future. Green Chem. Eng. 2024, 5, 418–439. [Google Scholar] [CrossRef]
- Powell, E.E.; Hill, G.A. Economic Assessment of an Integrated Bioethanol-Biodiesel-Microbial Fuel Cell Facility Utilizing Yeast and Photosynthetic Algae. Chem. Eng. Res. Des. 2009, 87, 1340–1348. [Google Scholar] [CrossRef]
- Tse, H.T.; Luo, S.; Li, J.; He, Z. Coupling Microbial Fuel Cells with a Membrane Photobioreactor for Wastewater Treatment and Bioenergy Production. Bioprocess Biosyst. Eng. 2016, 39, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Pisciotta, J.; Billmyre, R.B.; Baskakov, I.V. Photosynthetic Microbial Fuel Cells with Positive Light Response. Biotechnol. Bioeng. 2009, 104, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Rashid, N.; Hu, N.; Rehman, M.S.U.; Han, J.I. Electricity Generation and Microalgae Cultivation in Microbial Fuel Cell Using Microalgae-Enriched Anode and Bio-Cathode. Energy Convers. Manag. 2014, 79, 674–680. [Google Scholar] [CrossRef]
- Aguirre, A.M.; Bassi, A. Investigation of Biomass Concentration, Lipid Production, and Cellulose Content in Chlorella Vulgaris Cultures Using Response Surface Methodology. Biotechnol. Bioeng. 2013, 110, 2114–2122. [Google Scholar] [CrossRef]
- Gouveia, L.; Neves, C.; Sebastião, D.; Nobre, B.P.; Matos, C.T. Effect of Light on the Production of Bioelectricity and Added-Value Microalgae Biomass in a Photosynthetic Alga Microbial Fuel Cell. Bioresour. Technol. 2014, 154, 171–177. [Google Scholar] [CrossRef]
- Logroño, W.; Pérez, M.; Urquizo, G.; Kadier, A.; Echeverría, M.; Recalde, C.; Rákhely, G. Single Chamber Microbial Fuel Cell (SCMFC) with a Cathodic Microalgal Biofilm: A Preliminary Assessment of the Generation of Bioelectricity and Biodegradation of Real Dye Textile Wastewater. Chemosphere 2017, 176, 378–388. [Google Scholar] [CrossRef]
- Huarachi-Olivera, R.; Dueñas-Gonza, A.; Yapo-Pari, U.; Vega, P.; Romero-Ugarte, M.; Tapia, J.; Molina, L.; Lazarte-Rivera, A.; Pacheco-Salazar, D.G.; Esparza, M. Bioelectrogenesis with Microbial Fuel Cells (MFCs) Using the Microalga Chlorella Vulgaris and Bacterial Communities. Electron. J. Biotechnol. 2018, 31, 34–43. [Google Scholar] [CrossRef]
- Khandelwal, A.; Chhabra, M.; Yadav, P. Performance Evaluation of Algae Assisted Microbial Fuel Cell under Outdoor Conditions. Bioresour. Technol. 2020, 310, 123418. [Google Scholar] [CrossRef]
- Yadav, G.; Sharma, I.; Ghangrekar, M.; Sen, R. A Live Bio-Cathode to Enhance Power Output Steered by Bacteria-Microalgae Synergistic Metabolism in Microbial Fuel Cell. J. Power Sources 2020, 449, 227560. [Google Scholar] [CrossRef]
- Yahampath Arachchige Don, C.D.Y.; Babel, S. Circulation of Anodic Effluent to the Cathode Chamber for Subsequent Treatment of Wastewater in Photosynthetic Microbial Fuel Cell with Generation of Bioelectricity and Algal Biomass. Chemosphere 2021, 278, 130455. [Google Scholar] [CrossRef] [PubMed]
- Arun, S.; Sinharoy, A.; Pakshirajan, K.; Lens, P.N.L. Algae Based Microbial Fuel Cells for Wastewater Treatment and Recovery of Value-Added Products. Renew. Sustain. Energy Rev. 2020, 132, 110041. [Google Scholar] [CrossRef]
- Mateo, S.; Rodrigo, M.; Fonseca, L.P.; Cañizares, P.; Fernandez-Morales, F.J. Oxygen Availability Effect on the Performance of Air-Breathing Cathode Microbial Fuel Cell. Biotechnol. Prog. 2015, 31, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Christwardana, M.; Hadiyanto, H.; Motto, S.A.; Sudarno, S.; Haryani, K. Performance Evaluation of Yeast-Assisted Microalgal Microbial Fuel Cells on Bioremediation of Cafeteria Wastewater for Electricity Generation and Microalgae Biomass Production. Biomass Bioenergy 2020, 139, 105617. [Google Scholar] [CrossRef]
- Mekuto, L.; Olowolafe, A.V.A.; Pandit, S.; Dyantyi, N.; Nomngongo, P.; Huberts, R. Microalgae as a Biocathode and Feedstock in Anode Chamber for a Self-Sustainable Microbial Fuel Cell Technology: A Review. S. Afr. J. Chem. Eng. 2020, 31, 7–16. [Google Scholar] [CrossRef]
- Bardarov, I.; Mitov, M.; Ivanova, D.; Hubenova, Y. Light-Dependent Processes on the Cathode Enhance the Electrical Outputs of Sediment Microbial Fuel Cells. Bioelectrochemistry 2018, 122, 1–10. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Srikanth, S.; Chiranjeevi, P.; Arora, S.; Chandra, R. Algal Biocathode for in Situ Terminal Electron Acceptor (TEA) Production: Synergetic Association of Bacteria-Microalgae Metabolism for the Functioning of Biofuel Cell. Bioresour. Technol. 2014, 166, 566–574. [Google Scholar] [CrossRef]
- Revelo, D.M.; Hurtado, N.H.; Ruiz, J.O. Celdas de Combustible Microbianas (CCMs): Un Reto Para la Remoción de Materia Orgánica y la Generación de Energía Eléctrica. Inf. Tecnol. 2013, 24, 17–28. [Google Scholar] [CrossRef]
- ElMekawy, A.; Hegab, H.M.; Mohanakrishna, G.; Elbaz, A.F.; Bulut, M.; Pant, D. Technological Advances in CO2 Conversion Electro-Biorefinery: A Step toward Commercialization. Bioresour. Technol. 2016, 215, 357–370. [Google Scholar] [CrossRef]
- Elmekawy, A.; Hegab, H.M.; Vanbroekhoven, K.; Pant, D. Techno-Productive Potential of Photosynthetic Microbial Fuel Cells through Different Configurations. Renew. Sustain. Energy Rev. 2014, 39, 617–627. [Google Scholar] [CrossRef]
- Powell, E.E.; Mapiour, M.L.; Evitts, R.W.; Hill, G.A. Growth Kinetics of Chlorella Vulgaris and Its Use as a Cathodic Half Cell. Bioresour. Technol. 2009, 100, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Nagendranatha Reddy, C.; Nguyen, H.T.H.H.; Noori, T.; Min, B.; Nguyen, H.T.H.H.; Noori, M.T.; Min, B. Potential Applications of Algae in the Cathode of Microbial Fuel Cells for Enhanced Electricity Generation with Simultaneous Nutrient Removal and Algae Biorefinery: Current Status and Future Perspectives. Bioresour. Technol. 2019, 292, 122010. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Philips, J.; Verbeeck, K.; Rabaey, K.; Arends, J.B.A.; Dumitru, A.; Bajracharya, S.; ElMekawy, A.; Srikanth, S.; Pant, D.; et al. Microbial Electrochemical and Fuel Cells: Fundamentals and Applications; Woodhead Publishing: Cambridge, UK, 2016; Volume 88. [Google Scholar]
- Montoya-Vallejo, C.; Gil Posada, J.O.; Quintero-Díaz, J.C. Enhancement of Electricity Production in Microbial Fuel Cells Using a Biosurfactant-Producing Co-Culture. Molecules 2023, 28, 7833. [Google Scholar] [CrossRef]
- Huang, Q.; Sheng, L.; Wu, T.; Huang, L.; Yan, J.; Li, M.; Chen, Z.; Zhang, H. Research Progress on the Application of Carbon-Based Composites in Capacitive Deionization Technology. Desalination 2025, 593, 118197. [Google Scholar] [CrossRef]
- Montoya-Vallejo, C.; Quintero Díaz, J.C.; Yepes, Y.A.; Fernández-Morales, F.J. Microalgal Microbial Fuel Cells: A Comprehensive Review of Mechanisms and Electrochemical Performance. Appl. Sci. 2025, 15, 3335. [Google Scholar] [CrossRef]
- González Del Campo, A.; Cañizares, P.; Rodrigo, M.A.; Fernández, F.J.; Lobato, J. Microbial Fuel Cell with an Algae-Assisted Cathode: A Preliminary Assessment. J. Power Sources 2013, 242, 638–645. [Google Scholar] [CrossRef]
- Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environ. Sci. Technol. 2008, 42, 8630–8640. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Zhao, B.; Chang, Y.; Li, Z. Electrochemical Reduction of Carbon Dioxide in an MFC-MEC System with a Layer-by-Layer Self-Assembly Carbon Nanotube/Cobalt Phthalocyanine Modified Electrode. Environ. Sci. Technol. 2012, 46, 5198–5204. [Google Scholar] [CrossRef]
- Lobato, J.; González del Campo, A.; Fernández, F.J.; Cañizares, P.; Rodrigo, M.A. Lagooning Microbial Fuel Cells: A First Approach by Coupling Electricity-Producing Microorganisms and Algae. Appl. Energy 2013, 110, 220–226. [Google Scholar] [CrossRef]
- Gonzalez del Campo, A.; Perez, J.F.; Cañizares, P.; Rodrigo, M.A.; Fernandez, F.J.; Lobato, J. Study of a Photosynthetic MFC for Energy Recovery from Synthetic Industrial Fruit Juice Wastewater. Int. J. Hydrogen Energy 2014, 39, 21828–21836. [Google Scholar] [CrossRef]
- Gonzalez Del Campo, A.; Perez, J.F.; Cañizares, P.; Rodrigo, M.A.; Fernandez, F.J.; Lobato, J. Characterization of Light/Dark Cycle and Long-Term Performance Test in a Photosynthetic Microbial Fuel Cell. Fuel 2015, 140, 209–216. [Google Scholar] [CrossRef]
- Behera, M.; Jana, P.S.; Ghangrekar, M.M. Performance Evaluation of Low Cost Microbial Fuel Cell Fabricated Using Earthen Pot with Biotic and Abiotic Cathode. Bioresour. Technol. 2010, 101, 1183–1189. [Google Scholar] [CrossRef]
- Abazarian, E.; Gheshlaghi, R.; Mahdavi, M.A. Impact of Light/Dark Cycle on Electrical and Electrochemical Characteristics of Algal Cathode Sediment Microbial Fuel Cells. J. Power Sources 2020, 475, 228686. [Google Scholar] [CrossRef]
- Montoya-Vallejo, C.; Gil Posada, J.O.; Quintero-Díaz, J.C. Effect of Glucose and Methylene Blue in Microbial Fuel Cells Using E. coli. Energies 2023, 16, 7901. [Google Scholar] [CrossRef]
- Gajda, I.; Stinchcombe, A.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Algal “lagoon” Effect for Oxygenating MFC Cathodes. Int. J. Hydrogen Energy 2014, 39, 21857–21863. [Google Scholar] [CrossRef]
- Kakarla, R.; Min, B. Photoautotrophic Microalgae Scenedesmus Obliquus Attached on a Cathode as Oxygen Producers for Microbial Fuel Cell (MFC) Operation. Int. J. Hydrogen Energy 2014, 39, 10275–10283. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Luo, J.; Tan, C.; Tian, X.; Su, P.; Gu, T. Carbon Dioxide Sequestration Accompanied by Bioenergy Generation Using a Bubbling-Type Photosynthetic Algae Microbial Fuel Cell. Bioresour. Technol. 2019, 280, 95–103. [Google Scholar] [CrossRef]
- Milner, E.M.; Popescu, D.; Curtis, T.; Head, I.M.; Scott, K.; Yu, E.H. Microbial Fuel Cells with Highly Active Aerobic Biocathodes. J. Power Sources 2016, 324, 8–16. [Google Scholar] [CrossRef]
- Wang, D.B.; Song, T.S.; Guo, T.; Zeng, Q.; Xie, J. Electricity Generation from Sediment Microbial Fuel Cells with Algae-Assisted Cathodes. Int. J. Hydrogen Energy 2014, 39, 13224–13230. [Google Scholar] [CrossRef]
- Rimboud, M.; Bergel, A.; Erable, B. Multiple Electron Transfer Systems in Oxygen Reducing Biocathodes Revealed by Different Conditions of Aeration/Agitation. Bioelectrochemistry 2016, 110, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, Z.; Zhang, J.; Waite, T.D.; Wu, Z. Cost-Effective Chlorella Biomass Production from Dilute Wastewater Using a Novel Photosynthetic Microbial Fuel Cell (PMFC). Water Res. 2017, 108, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Song, T.; Zhu, X.; Wei, P.; Zhou, C.C. Construction and Operation of Microbial Fuel Cell with Chlorella Vulgaris Biocathode for Electricity Generation. Appl. Biochem. Biotechnol. 2013, 171, 2082–2092. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guan, K.; Wang, Z.; Xu, B.; Zhao, F. Isolation, Identification and Characterization of an Electrogenic Microalgae Strain. PLoS ONE 2013, 8, e73442. [Google Scholar] [CrossRef]
- Ozkan, A.; Berberoglu, H. Physico-Chemical Surface Properties of Microalgae. Colloids Surf. B Biointerfaces 2013, 112, 287–293. [Google Scholar] [CrossRef]
- Gajda, I.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Self-Sustainable Electricity Production from Algae Grown in a Microbial Fuel Cell System. Biomass Bioenergy 2015, 82, 87–93. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Q.; Xia, L.; Li, Y.; Song, S. Algae Cathode Microbial Fuel Cells for Cadmium Removal with Simultaneous Electricity Production Using Nickel Foam/Graphene Electrode. Biochem. Eng. J. 2018, 138, 179–187. [Google Scholar] [CrossRef]
- Zhou, M.; He, H.; Jin, T.; Wang, H. Power Generation Enhancement in Novel Microbial Carbon Capture Cells with Immobilized Chlorella Vulgaris. J. Power Sources 2012, 214, 216–219. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Z.; Su, X.; Zhao, P.; Zhou, J.; He, Q.; Ai, H. Cost-Effective Domestic Wastewater Treatment and Bioenergy Recovery in an Immobilized Microalgal-Based Photoautotrophic Microbial Fuel Cell (PMFC). Chem. Eng. J. 2019, 372, 956–965. [Google Scholar] [CrossRef]
- Elakkiya, E.; Niju, S. Simultaneous Treatment of Lipid Rich Ghee Industry Wastewater and Power Production in Algal Biocathode Based Microbial Fuel Cell. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 47, 252–262. [Google Scholar] [CrossRef]
- Kumar, S.S.; Basu, S.; Gupta, S.; Sharma, J.; Bishnoi, N.R. Bioelectricity Generation Using Sulphate-Reducing Bacteria as Anodic and Microalgae as Cathodic Biocatalysts. Biofuels 2018, 10, 81–86. [Google Scholar] [CrossRef]
- Polontalo, N.F.; Joelyna, F.A.; Hadiyanto, H. Production of Bioelectricity from Microalgae Microbial Fuel Cell (MMFC) Using Chlorella pyrenoidosa and Batik Wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012096. [Google Scholar] [CrossRef]
- Aiyer, K.S. Synergistic Effects in a Microbial Fuel Cell between Co-Cultures and a Photosynthetic Alga Chlorella Vulgaris Improve Performance. Heliyon 2021, 7, e05935. [Google Scholar] [CrossRef] [PubMed]
- Bazdar, E.; Roshandel, R.; Yaghmaei, S.; Mardanpour, M.M. The Effect of Different Light Intensities and Light/Dark Regimes on the Performance of Photosynthetic Microalgae Microbial Fuel Cell. Bioresour. Technol. 2018, 261, 350–360. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Liu, J.; Lee, H.; Li, C.; Li, N.; Ren, N. Sequestration of CO2 Discharged from Anode by Algal Cathode in Microbial Carbon Capture Cells (MCCs). Biosens. Bioelectron. 2010, 25, 2639–2643. [Google Scholar] [CrossRef]
- Powell, E.E.; Hill, G.A. Carbon Dioxide Neutral, Integrated Biofuel Facility. Energy 2010, 35, 4582–4586. [Google Scholar] [CrossRef]
- Pan, K.; Zhou, P. A Hermetic Self-Sustained Microbial Solar Cell Based on Chlorella Vulgaris and a Versatile Charge Transfer Chain. J. Power Sources 2015, 293, 467–474. [Google Scholar] [CrossRef]
- He, H.; Zhou, M.; Yang, J.; Hu, Y.; Zhao, Y. Simultaneous Wastewater Treatment, Electricity Generation and Biomass Production by an Immobilized Photosynthetic Algal Microbial Fuel Cell. Bioprocess Biosyst. Eng. 2014, 37, 873–880. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Christwardana, M.; da Costa, C. Electrogenic and Biomass Production Capabilities of a Microalgae–Microbial Fuel Cell (MMFC) System Using Tapioca Wastewater and Spirulina Platensis for COD Reduction. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 45, 3409–3420. [Google Scholar] [CrossRef]
- Da Costa, C. Hadiyanto Bioelectricity Production from Microalgae-Microbial Fuel Cell Technology (MMFC). MATEC Web Conf. 2018, 156, 01017. [Google Scholar] [CrossRef]
- Lin, C.C.; Wei, C.H.; Chen, C.I.; Shieh, C.J.; Liu, Y.C. Characteristics of the Photosynthesis Microbial Fuel Cell with a Spirulina Platensis Biofilm. Bioresour. Technol. 2013, 135, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.; Marzorati, S.; Lucchini, G.; Cristiani, P.; Pant, D.; Schievano, A. Assisting Cultivation of Photosynthetic Microorganisms by Microbial Fuel Cells to Enhance Nutrients Recovery from Wastewater. Bioresour. Technol. 2017, 237, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Nie, C.; Pei, H.; Hu, W.; Jiang, L.; Yang, Z. The Effect of Algae Species on the Bioelectricity and Biodiesel Generation through Open-Air Cathode Microbial Fuel Cell with Kitchen Waste Anaerobically Digested Effluent as Substrate. Bioresour. Technol. 2016, 218, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Wang, Z.J.; Zheng, Y.; Xiao, Y.; Yang, Z.H.; Zhao, F. Light Intensity Affects the Performance of Photo Microbial Fuel Cells with Desmodesmus sp. A8 as Cathodic Microorganism. Appl. Energy 2014, 116, 86–90. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Min, B. Leachate Treatment and Electricity Generation Using an Algae-Cathode Microbial Fuel Cell with Continuous Flow through the Chambers in Series. Sci. Total Environ. 2020, 723, 138054. [Google Scholar] [CrossRef]
- Yahampath Arachchige Don, C.D.Y.; Babel, S. Comparing the Performance of Microbial Fuel Cell with Mechanical Aeration and Photosynthetic Aeration in the Cathode Chamber. Int. J. Hydrogen Energy 2020, 46, 2–12. [Google Scholar] [CrossRef]
- Jiang, H.M.; Luo, S.J.; Shi, X.S.; Dai, M.; Guo, R.B. A System Combining Microbial Fuel Cell with Photobioreactor for Continuous Domestic Wastewater Treatment and Bioelectricity Generation. J. Cent. South Univ. 2013, 20, 488–494. [Google Scholar] [CrossRef]
- Gajda, I.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Photosynthetic Cathodes for Microbial Fuel Cells. Int. J. Hydrogen Energy 2013, 38, 11559–11564. [Google Scholar] [CrossRef]
- Xu, C.; Poon, K.; Choi, M.M.F.; Wang, R. Using Live Algae at the Anode of a Microbial Fuel Cell to Generate Electricity. Environ. Sci. Pollut. Res. 2015, 22, 15621–15635. [Google Scholar] [CrossRef]
- Bolognesi, S.; Cecconet, D.; Callegari, A.; Capodaglio, A.G. Combined Microalgal Photobioreactor/Microbial Fuel Cell System: Performance Analysis under Different Process Conditions. Environ. Res. 2021, 192, 110263. [Google Scholar] [CrossRef]
- Leon-Fernandez, L.F.; Medina-Díaz, H.L.; Pérez, O.G.; Romero, L.R.; Villaseñor, J.; Fernández-Morales, F.J. Acid Mine Drainage Treatment and Sequential Metal Recovery by Means of Bioelectrochemical Technology. J. Chem. Technol. Biotechnol. 2021, 96, 1543–1552. [Google Scholar] [CrossRef]
- Lugo-De Ossa, C.A.; Gómez-Vanegas, N.A.; Peñuela-Vásquez, M. Evaluation of the Carbon to Nitrogen and Carbon to Phosphorus Ratios for Improving the Production of Biomass and Fatty Acids in Chlorella sorokiniana. Hidrobiológica 2022, 32, 25–31. [Google Scholar] [CrossRef]
- Yeesang, C.; Cheirsilp, B. Effect of Nitrogen, Salt, and Iron Content in the Growth Medium and Light Intensity on Lipid Production by Microalgae Isolated from Freshwater Sources in Thailand. Bioresour. Technol. 2011, 102, 3034–3040. [Google Scholar] [CrossRef]
- Palomino, F. Nueva Técnica Colorimétrica Para la Determinación de Nitratos en El Plasma. Rev. Fac. Med. 1997, 45, 63–69. [Google Scholar]
- The American Public Health Association (Ed.) Methods for the Examination of Water and Wastewater; The American Public Health Association: Washington, DC, USA, 2015. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. Biofilm and Planktonic Population Distribution. Key Aspects in Carbonaceous Anodes for Microbial Fuel Cells. J. Chem. Technol. Biotechnol. 2018, 93, 3436–3443. [Google Scholar] [CrossRef]









| System | Voltage (mV) | Maximum Power Density (mW/m2) | Maximum Current Density (mA/m2) | Internal Resistance (kΩ) | Anodic COD Removal (%) | Electric Charge (Coulombs/Day) |
|---|---|---|---|---|---|---|
| SI–Air | 20 | 7.8 | 45.2 | 40.6 | 44.1 | 7.5 |
| SII–CO2 | 2 | 3.9 | 13.5 | 227.7 | 31.5 | 5.8 |
| SIII–mMFC | 29 | 28.6 | 139.3 | 15.7 | 54.3 | 8.0 |
| SIV–biofilm | 10 | 6.9 | 34.5 | 61.7 | 43.4 | 3.3 |
| SV–spent media | 14 | 1.3 | 7.1 | 274.3 | 42.9 | 4.2 |
| SVI–mMFC-MB | 26 | 32.9 | 194.8 | 9.2 | 86.9 | 13.8 |
| SVII–mMFC-NaHCO3 | 37 | 15.2 | 128.7 | 9.8 | 54.9 | 8.6 |
| Anodic Catalysts | Biocathode Catalysts | Power Density (mW/m2) | Pollutants Removal % | Microalgae (g/L) | Algae Lipids (%) | Ref. |
|---|---|---|---|---|---|---|
| Yeast + bacteria | C. pyrenoidosa | 1000 | 48% C | [73] | ||
| Anaerobic sludge | C. vulgaris | 1.114 | 60% C | 0.649 | [32] | |
| E. coli-P. aeruginosa | C. vulgaris | 248 | - | [74] | ||
| Anaerobic sludge | C. vulgaris | 54.4 | 75% C, 90% N | 1.34 | [31] | |
| Anaerobic sludge | C. vulgaris | 285 | 1.69 | 35.8 | [59] | |
| Anaerobic sludge | C. vulgaris | 126 (mW/m3) | 5.47% C | 4 | [75] | |
| Sludge | C. vulgaris | 2.2–6.42 | 92–98% C, 54% N | [28] | ||
| Activated sludge | C. vulgaris | 42.98 | 75% C, 70% N, 26% P | [53] | ||
| Bacterial consortium | C. vulgaris | 62.7 | 2.8 | [27] | ||
| Sediments | C. vulgaris | 21 | [61] | |||
| Activated sludge | C. vulgaris | 13.5 | 46–60% C | 0.4 | [48] | |
| Pre-acclimated bacteria | C. vulgaris | 24.4 | [64] | |||
| Pre-acclimated bacteria | C. vulgaris | 5.6 W/m3 | [76] | |||
| Activated sludge. | C. vulgaris | 1926 | 57% C | 1.24 | [25] | |
| Ferricyanide | C. vulgaris | 2.7 | [42,77] | |||
| C. vulgaris + methylene blue | C. vulgaris + Ferricyanide | 477.3 | [78] | |||
| Anaerobic sludge | Immobilized C. vulgaris | 2485.35 mW/m3 | 84.8% C, 95% N | [69] | ||
| Anaerobic sludge | Immobilized C. vulgaris | 142 W/m2 | 92.1% C | 106 cell/mL | [79] | |
| Anaerobic sludge | Immobilized C. vulgaris | 466.9 mW/m3 | 93% C, 95% N, 82% P | 2.5 | 32 | [70] |
| Sediments | Chlorella sp. | 19.6 | 60% C | 0.7 | [55] | |
| Activated sludge | Chlorella sp. | 36.4 | [68] | |||
| S. cerevisiae | S. platensis | 98 | 0.74 | [35] | ||
| Tapioca wastewater | S. platensis | 14.4 | 67.5% C, 76% N | 0.5 | [80] | |
| S. platensis | 44.33 | 63%C | [81] | |||
| S. platensis | S. platensis | 10 | [82] | |||
| Activated sludge | Spirulina sp. | 980 | 89% C, 83% N | [83] | ||
| Anaerobic sludge | Golenkinia sp. | 6255 mW/m3 | 43.59% C, 37% N, 98% P | 0.325 | 38 | [84] |
| Wastewater | S. obliquos | 153 | [58] | |||
| Desmodesmus sp. | 64.2 | [85] | ||||
| Sulphate-reducing bacteria | Pure microalgal culture | 7.2 | 0.95 | 7.48 | [72] | |
| Anaerobic sludge | Algal culture | 80.8% C, 53% N, 12% P | 3.5–6.5 | [63] | ||
| Proteobacteria, Cyanobacteria, Bacteroidetes and Chloro-phyta | - | 26% C, 58% N, 86.4% P | [86] | |||
| Anaerobic sludge | Mixed-culture microalgae | 24.25 | 82% C | 4.11 | [87] | |
| Ghee wastewater | Consortium of microalgae | 3.33 | 96% C | [71] | ||
| Anaerobic sludge | Mixture of algae and bacteria | 5.5 mW/m3 | 92–97% C | 0.133 | [23] | |
| Activated anaerobic sludge | Mix from a pond | 4.4 | 0.4 | [67] | ||
| Anaerobic mixed consortia | Mixed microalgal culture | 57 | 79% C | 4.2 | [38] | |
| Activated sludge | A mixed culture of microalgae | 481 mW/m3 | 77.9% C, 97% N 23% P | [88] | ||
| Anaerobic sludge | Mixed consortia with | 36.7 | [54] | |||
| Anaerobic activated sludge | Pond water | 7.00 | [89] | |||
| C. pyrenoidosa | Ferricyanide | 2.15 | 5.94 × 106 cells/mL | [90] |
| Systems | Cathodic Chamber | Purpose |
|---|---|---|
| SI–Air | Milli-Q water continuously aerated (pH = 7.0) | MFC (control test) |
| SII–CO2 | Milli-Q water (pH = 7) with pure CO2 bubble | Contribution of CO2 as electron acceptor |
| SIII–mMFC | mMFC: Fresh Chu 13 medium and microalgae | Contribution of attached and suspended microalgae, as well as internal mediators |
| SIV–biofilm | mMFC: Milli-Q water with microalgae biofilm-coated cathode | Contribution of attached microalgae |
| SV–spent media | Spent Chu 13 medium. Supernatant of microalgae culture, separated by centrifugation | Contribution of internal mediators |
| SVI–mMFC-MB | mMFC: SIII + Methylene Blue 30 mM | Contribution of external mediator |
| SVII–mMFC-NaHCO3 | mMFC: SIII + sodium bicarbonate 12 mM | Contribution of sodium bicarbonate as external carbon source |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Montoya-Vallejo, C.; Quintero Díaz, J.C.; Fernández-Morales, F.J. Study of the Cathodic Catalytic Mechanisms of Microalgae-Based Microbial Fuel Cells. Catalysts 2026, 16, 159. https://doi.org/10.3390/catal16020159
Montoya-Vallejo C, Quintero Díaz JC, Fernández-Morales FJ. Study of the Cathodic Catalytic Mechanisms of Microalgae-Based Microbial Fuel Cells. Catalysts. 2026; 16(2):159. https://doi.org/10.3390/catal16020159
Chicago/Turabian StyleMontoya-Vallejo, Carolina, Juan Carlos Quintero Díaz, and Francisco Jesús Fernández-Morales. 2026. "Study of the Cathodic Catalytic Mechanisms of Microalgae-Based Microbial Fuel Cells" Catalysts 16, no. 2: 159. https://doi.org/10.3390/catal16020159
APA StyleMontoya-Vallejo, C., Quintero Díaz, J. C., & Fernández-Morales, F. J. (2026). Study of the Cathodic Catalytic Mechanisms of Microalgae-Based Microbial Fuel Cells. Catalysts, 16(2), 159. https://doi.org/10.3390/catal16020159

