Micro-/Nano Biomedical Point-of-Care Devices

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Nano- and Micro-Technologies in Biosensors".

Deadline for manuscript submissions: closed (31 May 2025) | Viewed by 2220

Special Issue Editor


E-Mail Website
Guest Editor
National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
Interests: microfluidics; 3D cell cultures; human-on-a-chip; lab automation; biomedical engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleague,

Medical diagnostics play an important role in patient care. Today’s issues include the speed of diagnostics (as samples are sent to a central lab for diagnostics), the price of the tests, as well as complexity of operation. However, COVID-19 has shown us the way to home-based testing kits, although with limited accuracy and applications. As such, there is a greater need for faster and more complex point-of-care devices which can be used in clinics, remotely or even at home, without the need for specialized laboratories. Devices can be simple microfluidic or paper-based test kits for single analysis or can also be more complex systems detecting multiple biomarkers. To fully utilize the possibilities of point of care, automation and remote diagnostics should also be considered—think of tele-medicine. Point-of-care devices also aim to prevent medical problems by being able to achieve advanced detection of biomarkers before the manifestation of the disease, which means an increase in sensor sensitivity to detect low concentration of biomarkers. Finally, sample preparation should also be considered. This is a key factor in the ease of operation of the device as well as the ease of collecting the sample itself.

Dr. Danny van Noort
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 8827 KiB  
Article
One-Pot Colorimetric Nucleic Acid Test Mediated by Silver Nanoparticles for DNA Extraction and Detection
by Seung Kyun Park, Kieu The Loan Trinh and Nae Yoon Lee
Biosensors 2025, 15(5), 271; https://doi.org/10.3390/bios15050271 - 25 Apr 2025
Viewed by 450
Abstract
This study introduces a one-pot colorimetric nucleic acid test (NAT) platform that integrates silver nanoparticle (AgNP)-based DNA isolation and colorimetric detection of bacterial genes. The NAT platform is comprised with purification and reaction units that enable cell lysis, DNA purification, loop-mediated isothermal amplification [...] Read more.
This study introduces a one-pot colorimetric nucleic acid test (NAT) platform that integrates silver nanoparticle (AgNP)-based DNA isolation and colorimetric detection of bacterial genes. The NAT platform is comprised with purification and reaction units that enable cell lysis, DNA purification, loop-mediated isothermal amplification (LAMP), and colorimetric detection. In the purification unit, polyethyleneimine (PEI)-capped AgNPs were used as cell lysis agents because of their cell-disrupting and antimicrobial properties and were immobilized on a glass fiber membrane for DNA capture and isolation. The reaction unit enabled colorimetric detection of DNA amplicons, achieved by the synthesis of AgNPs on chromatography paper formed via the reduction of silver ions present on the paper, mediated by the use of sodium ascorbate, a reducing agent, present in the LAMP reagent, after the reaction. AgNPs were formed only in the presence of the target amplicons in the positive samples after reaction at 65 °C for 5 min. Bacterial DNA was efficiently extracted using this method, and Enterococcus faecium was detected with a detection limit of 102 CFU/mL. This platform is a promising alternative for rapid and cost-effective nucleic acid testing in resource-limited settings. Full article
(This article belongs to the Special Issue Micro-/Nano Biomedical Point-of-Care Devices)
Show Figures

Figure 1

13 pages, 2500 KiB  
Article
All-Printed Microfluidic–Electrochemical Devices for Glucose Detection
by Zexi Wang, Zhiyi Zhang and Changqing Xu
Biosensors 2024, 14(12), 569; https://doi.org/10.3390/bios14120569 - 24 Nov 2024
Viewed by 1246
Abstract
Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic–electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for [...] Read more.
Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic–electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for sensing glucose. The study shows that both a low polymer concentration in the mixture for printing the microfluidic channels and surface modification of the printed microfluidic channels using 3-aminopropyltrimethoxysilane can substantially boost the device’s performance. It also shows that both device structure and enzyme doping level of the devices play an important role in ensuring the best performance of the devices under various testing conditions. Full article
(This article belongs to the Special Issue Micro-/Nano Biomedical Point-of-Care Devices)
Show Figures

Figure 1

Back to TopTop