Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1488 KB  
Article
Towards an Improved Test of the Standard Model’s Most Precise Prediction
by G. Gabrielse, S. E. Fayer, T. G. Myers and X. Fan
Atoms 2019, 7(2), 45; https://doi.org/10.3390/atoms7020045 - 25 Apr 2019
Cited by 29 | Viewed by 6778
Abstract
The electron and positron magnetic moments are the most precise prediction of the standard model of particle physics. The most accurate measurement of a property of an elementary particle has been made to test this result. A new experimental method is now being [...] Read more.
The electron and positron magnetic moments are the most precise prediction of the standard model of particle physics. The most accurate measurement of a property of an elementary particle has been made to test this result. A new experimental method is now being employed in an attempt to improve the measurement accuracy by an order of magnitude. Positrons from a “student source” now suffice for the experiment. Progress toward a new measurement is summarized. Full article
(This article belongs to the Special Issue High Precision Measurements of Fundamental Constants)
Show Figures

Figure 1

9 pages, 1034 KB  
Article
Testing Quantum Coherence in Stochastic Electrodynamics with Squeezed Schrödinger Cat States
by Wayne Cheng-Wei Huang and Herman Batelaan
Atoms 2019, 7(2), 42; https://doi.org/10.3390/atoms7020042 - 5 Apr 2019
Cited by 12 | Viewed by 4612
Abstract
The interference pattern in electron double-slit diffraction is a hallmark of quantum mechanics. A long-standing question for stochastic electrodynamics (SED) is whether or not it is capable of reproducing such effects, as interference is a manifestation of quantum coherence. In this study, we [...] Read more.
The interference pattern in electron double-slit diffraction is a hallmark of quantum mechanics. A long-standing question for stochastic electrodynamics (SED) is whether or not it is capable of reproducing such effects, as interference is a manifestation of quantum coherence. In this study, we used excited harmonic oscillators to directly test this quantum feature in SED. We used two counter-propagating dichromatic laser pulses to promote a ground-state harmonic oscillator to a squeezed Schrödinger cat state. Upon recombination of the two well-separated wavepackets, an interference pattern emerges in the quantum probability distribution but is absent in the SED probability distribution. We thus give a counterexample that rejects SED as a valid alternative to quantum mechanics. Full article
Show Figures

Figure 1

17 pages, 2099 KB  
Article
Radiative Transition Parameters in Atomic Lanthanum from Pseudo-Relativistic Hartree–Fock and Fully Relativistic Dirac–Hartree–Fock Calculations
by Sébastien Gamrath, Patrick Palmeri and Pascal Quinet
Atoms 2019, 7(1), 38; https://doi.org/10.3390/atoms7010038 - 20 Mar 2019
Cited by 9 | Viewed by 3700
Abstract
Calculated radiative transition probabilities and oscillator strengths are reported for 392 lines of neutral lanthanum (La I) atom in the spectral range from the near ultraviolet to the mid infrared. They were obtained using two different theoretical methods based on the pseudo-relativistic Hartree–Fock [...] Read more.
Calculated radiative transition probabilities and oscillator strengths are reported for 392 lines of neutral lanthanum (La I) atom in the spectral range from the near ultraviolet to the mid infrared. They were obtained using two different theoretical methods based on the pseudo-relativistic Hartree–Fock (HFR) and the fully relativistic multiconfiguration Dirac–Hartree–Fock (MCDHF) approaches, both including the most important intravalence and core-valence electron correlations. The quality of these radiative parameters was assessed through detailed comparisons between the results obtained using different physical models and between our theoretical results and the experimental data, where available. Of the total number of La I lines listed in the present work, about 60% have gf- and gA-values determined for the first time. Full article
Show Figures

Figure 1

23 pages, 327 KB  
Review
High-Precision Atomic Mass Measurements for Fundamental Constants
by Edmund G. Myers
Atoms 2019, 7(1), 37; https://doi.org/10.3390/atoms7010037 - 18 Mar 2019
Cited by 35 | Viewed by 7224
Abstract
Atomic mass measurements are essential for obtaining several of the fundamental constants. The most precise atomic mass measurements, at the 10−10 level of precision or better, employ measurements of cyclotron frequencies of single ions in Penning traps. We discuss the relation of [...] Read more.
Atomic mass measurements are essential for obtaining several of the fundamental constants. The most precise atomic mass measurements, at the 10−10 level of precision or better, employ measurements of cyclotron frequencies of single ions in Penning traps. We discuss the relation of atomic masses to fundamental constants in the context of the revised SI. We then review experimental methods, and the current status of measurements of the masses of the electron, proton, neutron, deuteron, tritium, helium-3, helium-4, oxygen-16, silicon-28, rubidium-87, and cesium-133. We conclude with directions for future work. Full article
(This article belongs to the Special Issue High Precision Measurements of Fundamental Constants)
27 pages, 564 KB  
Article
Theory of the Anomalous Magnetic Moment of the Electron
by Tatsumi Aoyama, Toichiro Kinoshita and Makiko Nio
Atoms 2019, 7(1), 28; https://doi.org/10.3390/atoms7010028 - 22 Feb 2019
Cited by 384 | Viewed by 18216
Abstract
The anomalous magnetic moment of the electron a e measured in a Penning trap occupies a unique position among high precision measurements of physical constants in the sense that it can be compared directly with the theoretical calculation based on the renormalized quantum [...] Read more.
The anomalous magnetic moment of the electron a e measured in a Penning trap occupies a unique position among high precision measurements of physical constants in the sense that it can be compared directly with the theoretical calculation based on the renormalized quantum electrodynamics (QED) to high orders of perturbation expansion in the fine structure constant α , with an effective parameter α / π . Both numerical and analytic evaluations of a e up to ( α / π ) 4 are firmly established. The coefficient of ( α / π ) 5 has been obtained recently by an extensive numerical integration. The contributions of hadronic and weak interactions have also been estimated. The sum of all these terms leads to a e ( theory ) = 1 159 652 181.606 ( 11 ) ( 12 ) ( 229 ) × 10 12 , where the first two uncertainties are from the tenth-order QED term and the hadronic term, respectively. The third and largest uncertainty comes from the current best value of the fine-structure constant derived from the cesium recoil measurement: α 1 ( Cs ) = 137.035 999 046 ( 27 ) . The discrepancy between a e ( theory ) and a e ( ( experiment ) ) is 2.4 σ . Assuming that the standard model is valid so that a e (theory) = a e (experiment) holds, we obtain α 1 ( a e ) = 137.035 999 1496 ( 13 ) ( 14 ) ( 330 ) , which is nearly as accurate as α 1 ( Cs ) . The uncertainties are from the tenth-order QED term, hadronic term, and the best measurement of a e , in this order. Full article
(This article belongs to the Special Issue High Precision Measurements of Fundamental Constants)
Show Figures

Figure 1

12 pages, 409 KB  
Article
Capture Cross Sections and Radiative Emission-Line Strengths for Slow Ne8+ Collisions with He and H2
by Anthony C. K. Leung and Tom Kirchner
Atoms 2019, 7(1), 15; https://doi.org/10.3390/atoms7010015 - 23 Jan 2019
Cited by 3 | Viewed by 3687
Abstract
The Ne8+–He and –H2 collision systems are examined at impact speeds ranging between 0.17 and 0.4 a.u. Transition probabilities for electron capture are obtained using the two-center basis generator method performed within the independent-electron model. The aim of calculating capture [...] Read more.
The Ne8+–He and –H2 collision systems are examined at impact speeds ranging between 0.17 and 0.4 a.u. Transition probabilities for electron capture are obtained using the two-center basis generator method performed within the independent-electron model. The aim of calculating capture cross sections for these collision systems is to provide new theoretical verification of previously reported experimental data and to provide aid for astrophysical X-ray studies. This study also examines the applicability of the independent-electron model with effective potentials to describe two-electron capture for these two systems. Comparisons of capture cross sections and radiative-emission counts with the available experimental and theoretical data show an overall good agreement. Full article
Show Figures

Figure 1

19 pages, 1063 KB  
Article
Two-Photon Vibrational Transitions in 16O2+ as Probes of Variation of the Proton-to-Electron Mass Ratio
by Ryan Carollo, Alexander Frenett and David Hanneke
Atoms 2019, 7(1), 1; https://doi.org/10.3390/atoms7010001 - 20 Dec 2018
Cited by 15 | Viewed by 4783
Abstract
Vibrational overtones in deeply-bound molecules are sensitive probes for variation of the proton-to-electron mass ratio μ . In nonpolar molecules, these overtones may be driven as two-photon transitions. Here, we present procedures for experiments with 16 O 2 + , including state-preparation through [...] Read more.
Vibrational overtones in deeply-bound molecules are sensitive probes for variation of the proton-to-electron mass ratio μ . In nonpolar molecules, these overtones may be driven as two-photon transitions. Here, we present procedures for experiments with 16 O 2 + , including state-preparation through photoionization, a two-photon probe, and detection. We calculate transition dipole moments between all X 2 Π g vibrational levels and those of the A 2 Π u excited electronic state. Using these dipole moments, we calculate two-photon transition rates and AC-Stark-shift systematics for the overtones. We estimate other systematic effects and statistical precision. Two-photon vibrational transitions in 16 O 2 + provide multiple routes to improved searches for μ variation. Full article
(This article belongs to the Special Issue High Precision Measurements of Fundamental Constants)
Show Figures

Figure 1

19 pages, 5766 KB  
Article
Measurements of the Neutron Lifetime
by F. E. Wietfeldt
Atoms 2018, 6(4), 70; https://doi.org/10.3390/atoms6040070 - 10 Dec 2018
Cited by 24 | Viewed by 8898
Abstract
Free neutron decay is a fundamental process in particle and nuclear physics. It is the prototype for nuclear beta decay and other semileptonic weak particle decays. Neutron decay played a key role in the formation of light elements in the early universe. The [...] Read more.
Free neutron decay is a fundamental process in particle and nuclear physics. It is the prototype for nuclear beta decay and other semileptonic weak particle decays. Neutron decay played a key role in the formation of light elements in the early universe. The precise value of the neutron mean lifetime, about 15 min, has been the subject of many experiments over the past 70 years. The two main experimental methods, the beam method and the ultracold neutron storage method, give average values of the neutron lifetime that currently differ by 8.7 s (4 standard deviations), a serious discrepancy. The physics of neutron decay, implications of the neutron lifetime, previous and recent experimental measurements, and prospects for the future are reviewed. Full article
(This article belongs to the Special Issue High Precision Measurements of Fundamental Constants)
Show Figures

Figure 1

Back to TopTop