applsci-logo

Journal Browser

Journal Browser

Archaeological Analysis and Characterization of Ceramics Materials

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Materials Science and Engineering".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 2459

Special Issue Editor


E-Mail Website
Guest Editor
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
Interests: archaeological ceramic materials; glaze and pigment; heterogeneity; deterioration; microstructure; compositional variability; physical chemistry; colouring mechanism; reverse engineering; provenance identification
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Excavated or handed-down archaeological ceramics often implicate a sophisticated level of craft practice and an advanced understanding of materials. Archaeological ceramics manufactured by ancient craftsmen have a common feature of heterogeneity, and the long-term effect of environment may cause additional alterations as well. This Special Issue aims to promote the development and use of scientific techniques for the extraction of archaeological and scientific information on ceramics materials and the paleo-environment, so as to provide evidence for the interpretation and reverse-engineering of the production, trade, and evolution of ceramics materials.

Topics of interest include, but are not limited to, the following:

  • New methods and techniques;
  • Data processing and interpretation;
  • Dating, provenance, and technology exchange;
  • Kiln and firing technology;
  • Compositional variability;
  • Morphology and microstructure at various levels and scales;
  • Alteration and conservation;
  • Experimental archaeology;
  • Reverse engineering.

Prof. Dr. Weidong Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • archaeological ceramics materials
  • data processing and interpretation
  • dating
  • provenance
  • alteration
  • reverse-engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 7732 KiB  
Article
Formation Mechanism of Crystal Spots in Jian Kiln Oil-Spot Glaze Revealed by Simulation Experiments
by Caishui Jiang, Junming Wu, Jianer Zhou, Ting Luo, Qifu Bao and Kun Liu
Appl. Sci. 2024, 14(22), 10210; https://doi.org/10.3390/app142210210 - 7 Nov 2024
Viewed by 1034
Abstract
The crystalline morphology and glaze color of Jian Kiln oil-spot glaze porcelain exhibit artistic beauty, making it one of the typical representatives of iron-based crystallized black porcelain from the Song Dynasty in China. This study sampled a series of specimens from key temperature [...] Read more.
The crystalline morphology and glaze color of Jian Kiln oil-spot glaze porcelain exhibit artistic beauty, making it one of the typical representatives of iron-based crystallized black porcelain from the Song Dynasty in China. This study sampled a series of specimens from key temperature points during simulation experiments, employing rapid air quenching to preserve the high-temperature state, capturing the formation process of oil-spot glaze crystals in Jian kiln ceramics. Key samples were subjected to microscopic structure and phase analysis using scanning electron microscopy (SEM), laser Raman spectroscopy (LRS), and X-ray photoelectron spectroscopy (XPS), revealing the formation mechanism of oil-spot glaze crystals in Jian kiln ceramics. The results indicate that the bubbles generated from the decomposition of iron oxide at high temperatures facilitate the migration and enrichment of iron-rich particles towards the glaze surface, laying a crucial material foundation for the subsequent crystallization process. The high-temperature reducing atmosphere accelerates the decomposition reaction of iron oxide, altering the concentration of Fe2+ in the glaze, the viscosity of the melt, and the surface tension, all of which are critical conditions that promote the formation of oil-spot glaze crystals. During the cooling phase, Fe3O4 nanocrystals oxidize into ε-Fe2O3 crystals, with external iron sources migrating inward to support ε-Fe2O3 crystal growth. This process gradually leads to the formation of micrometer-scale, leaf-shaped ε-Fe2O3 crystals that fully occupy the crystalline spots. The coloration of crystalline spots is closely tied to the size of the crystals. Thus, by adjusting the cooling regime, it is possible to create iron-based crystallization glazes with innovative color effects. Furthermore, this study offers significant insights for understanding the crystallization mechanisms of other ancient Chinese high-temperature iron-based crystallization glazes. Full article
(This article belongs to the Special Issue Archaeological Analysis and Characterization of Ceramics Materials)
Show Figures

Figure 1

24 pages, 14243 KiB  
Article
Degradation of a Sauce-Glazed Ware from the Song Dynasty Salvaged Out of Water at the Dalian Island Wharf: Part II—The Effect of Surface-Attached Marine Organism Remains
by Rao Ding, Weidong Li, Zelin Yang, Changsong Xu and Xiaoke Lu
Appl. Sci. 2024, 14(19), 8596; https://doi.org/10.3390/app14198596 - 24 Sep 2024
Viewed by 856
Abstract
Dalian Island, located in the northwest of Pingtan County, Fujian Province, China, has been an important junction on the Maritime Silk Road since the Tang dynasty. This study focuses on sauce-glazed ceramic ware from the Song dynasty salvaged from the waters near Dalian [...] Read more.
Dalian Island, located in the northwest of Pingtan County, Fujian Province, China, has been an important junction on the Maritime Silk Road since the Tang dynasty. This study focuses on sauce-glazed ceramic ware from the Song dynasty salvaged from the waters near Dalian Island Wharf. The composition, phase attributes, and microstructures of the marine organism remains attached to the ceramic ware were analyzed using an optical microscope, scanning electron microscope, and micro-Raman spectrometer to investigate the influence of marine organisms on the degradation of the ceramic ware. Long-term abrasion by sea wave-borne debris led to the increased surface roughness and wettability of the ceramic ware, facilitating the attachment of marine organisms. Differences in surface roughness between the inner and outer walls led to varying levels of biomass. Coralline algae secreted inducers to attract the larvae of macrofoulers. The attachment of different types of marine organisms had varying effects on the degradation of the ceramic ware. Firmly attached unitary organisms could alleviate the scouring of sea wave-borne debris and hinder the intrusion of foreign pollutants, thereby playing a ‘bio-protective’ role. In contrast, the group skeletons of modular organisms could reinforce the mechanically damaged surface but failed to block the intrusion of iron rust and other pollutants, resulting in chemical alterations of the glaze. Therefore, the specific species of the attached marine organisms should be considered in subsequent conservation efforts. Full article
(This article belongs to the Special Issue Archaeological Analysis and Characterization of Ceramics Materials)
Show Figures

Figure 1

Back to TopTop